Brett A Neilan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532955/publications.pdf Version: 2024-02-01

		9264	12946
310	21,128	74	131
papers	citations	h-index	g-index
321	321	321	16237
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chemistry and Biology, 2000, 7, 753-764.	6.0	852
2	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
3	Neurotoxic Alkaloids: Saxitoxin and Its Analogs. Marine Drugs, 2010, 8, 2185-2211.	4.6	604
4	On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin. Marine Drugs, 2010, 8, 1650-1680.	4.6	474
5	rRNA Sequences and Evolutionary Relationships among Toxic and Nontoxic Cyanobacteria of the Genus Microcystis. International Journal of Systematic Bacteriology, 1997, 47, 693-697.	2.8	439
6	A Red-Shifted Chlorophyll. Science, 2010, 329, 1318-1319.	12.6	437
7	Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium <i>Microcystis aeruginosa</i> PCC 7806. Molecular Microbiology, 1997, 26, 779-787.	2.5	361
8	Light and the Transcriptional Response of the Microcystin Biosynthesis Gene Cluster. Applied and Environmental Microbiology, 2000, 66, 3387-3392.	3.1	337
9	Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. Journal of Phycology, 2000, 36, 251-258.	2.3	336
10	Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria. Applied and Environmental Microbiology, 2008, 74, 4044-4053.	3.1	322
11	Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiology Reviews, 2013, 37, 23-43.	8.6	282
12	Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiological Research, 2014, 169, 483-495.	5.3	268
13	Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology, 2013, 15, 1239-1253.	3.8	262
14	Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 2005, 7, 519-529.	3.8	252
15	Characterization of the Gene Cluster Responsible for Cylindrospermopsin Biosynthesis. Applied and Environmental Microbiology, 2008, 74, 716-722.	3.1	247
16	Nonribosomal Peptide Synthesis and Toxigenicity of Cyanobacteria. Journal of Bacteriology, 1999, 181, 4089-4097.	2.2	243
17	Identification of genes implicated in toxin production in the cyanobacteriumCylindrospermopsis raciborskii. Environmental Toxicology, 2001, 16, 413-421.	4.0	242
18	Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology, 2004, 67, 387-396.	4.0	242

#	Article	IF	CITATIONS
19	Detection of Toxigenicity by a Probe for the Microcystin Synthetase A Gene (mcyA) of the Cyanobacterial Genus Microcystis : Comparison of Toxicities with 16S rRNA and Phycocyanin Operon (Phycocyanin Intergenic Spacer) Phylogenies. Applied and Environmental Microbiology, 2001, 67, 2810-2818.	3.1	239
20	Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 2001, 35, 1-9.	2.7	237
21	Characterization of the Nodularin Synthetase Gene Cluster and Proposed Theory of the Evolution of Cyanobacterial Hepatotoxins. Applied and Environmental Microbiology, 2004, 70, 6353-6362.	3.1	226
22	Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environmental Microbiology, 2004, 6, 1096-1101.	3.8	225
23	Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME Journal, 2016, 10, 1337-1351.	9.8	212
24	On the origins and biosynthesis of tetrodotoxin. Aquatic Toxicology, 2011, 104, 61-72.	4.0	184
25	Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Natural Product Reports, 2013, 30, 1121.	10.3	180
26	Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochemistry, 2009, 10, 8.	4.4	174
27	Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates. PLoS ONE, 2011, 6, e20096.	2.5	172
28	Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Archives of Microbiology, 2006, 185, 107-114.	2.2	167
29	Varied Diazotrophies, Morphologies, and Toxicities of Genetically Similar Isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia. Applied and Environmental Microbiology, 2001, 67, 1839-1845.	3.1	165
30	Increased incidence of Cylindrospermopsis raciborskii in temperate zones – Is climate change responsible?. Water Research, 2012, 46, 1408-1419.	11.3	165
31	Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 2009, 7, 82-96.	2.4	164
32	Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. International Journal of Systematic Bacteriology, 1998, 48, 1205-1212.	2.8	163
33	Mucispirillum schaedleri gen. nov., sp. nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1199-1204.	1.7	153
34	Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nature Genetics, 2012, 44, 593-597.	21.4	152
35	Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae, 2016, 54, 44-53.	4.8	152
36	lnactivation of an ABC Transporter Gene, <i>mcyH</i> , Results in Loss of Microcystin Production in the Cyanobacterium <i>Microcystis aeruginosa</i> PCC 7806. Applied and Environmental Microbiology, 2004, 70, 6370-6378.	3.1	150

#	Article	IF	CITATIONS
37	Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME Journal, 2016, 10, 183-196.	9.8	147
38	Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Molecular Ecology, 2002, 12, 133-140.	3.9	138
39	Detection and sequencing of the microcystin LR-degrading gene,mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiology Letters, 2003, 229, 271-276.	1.8	137
40	Use of Superoxide as an Electron Shuttle for Iron Acquisition by the Marine CyanobacteriumLyngbya majuscula. Environmental Science & Technology, 2005, 39, 3708-3715.	10.0	136
41	First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicology and Environmental Safety, 2003, 55, 243-250.	6.0	133
42	Carotenoid Analysis of Halophilic Archaea by Resonance Raman Spectroscopy. Astrobiology, 2007, 7, 631-643.	3.0	132
43	Gene Expression Profiling of Helicobacter pylori Reveals a Growth-Phase-Dependent Switch in Virulence Gene Expression. Infection and Immunity, 2003, 71, 2643-2655.	2.2	128
44	Multiple Alternate Transcripts Direct the Biosynthesis of Microcystin, a Cyanobacterial. Applied and Environmental Microbiology, 2002, 68, 449-455.	3.1	126
45	Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME Journal, 2009, 3, 383-396.	9.8	125
46	Cyanobacterial Protease Inhibitor Microviridin J Causes a Lethal Molting Disruption in Daphnia pulicaria. Applied and Environmental Microbiology, 2004, 70, 5047-5050.	3.1	124
47	Description of â€~Candidatus Helicobacter heilmannii' based on DNA sequence analysis of 16S rRNA and urease genes. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2203-2211.	1.7	123
48	Genetic Variation of the Bloom-Forming Cyanobacterium Microcystis aeruginosa within and among Lakes: Implications for Harmful Algal Blooms. Applied and Environmental Microbiology, 2005, 71, 6126-6133.	3.1	123
49	Iron uptake and toxin synthesis in the bloomâ€forming <i>Microcystis aeruginosa</i> under iron limitation. Environmental Microbiology, 2011, 13, 1064-1077.	3.8	123
50	Isolation, characterization, and quantitative analysis of Microviridin J, a new Microcystis metabolite toxic to Daphnia. Journal of Chemical Ecology, 2003, 29, 1757-1770.	1.8	119
51	An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. International Journal of Biochemistry and Cell Biology, 2004, 36, 931-941.	2.8	119
52	Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Research, 2007, 41, 492-498.	11.3	117
53	THE FRESHWATER CYANOBACTERIUMPLANKTOTHRIXSP. FP1: MOLECULAR IDENTIFICATION AND DETECTION OF PARALYTIC SHELLFISH POISONING TOXINS. Journal of Phycology, 2000, 36, 553-562.	2.3	113
54	Detection of Saxitoxin-Producing Cyanobacteria and <i>Anabaena circinalis</i> in Environmental Water Blooms by Quantitative PCR. Applied and Environmental Microbiology, 2010, 76, 7836-7842.	3.1	108

#	Article	IF	CITATIONS
55	Geographical Segregation of the Neurotoxin-Producing Cyanobacterium Anabaena circinalis. Applied and Environmental Microbiology, 2000, 66, 4468-4474.	3.1	106
56	Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Research, 1999, 27, 26e-26.	14.5	105
57	<i>sxtA</i> -Based Quantitative Molecular Assay To Identify Saxitoxin-Producing Harmful Algal Blooms in Marine Waters. Applied and Environmental Microbiology, 2011, 77, 7050-7057.	3.1	104
58	Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology (United Kingdom), 2001, 147, 3113-3119.	1.8	103
59	The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Current Opinion in Biotechnology, 2008, 19, 281-288.	6.6	103
60	Extraordinary Conservation, Gene Loss, and Positive Selection in the Evolution of an Ancient Neurotoxin. Molecular Biology and Evolution, 2011, 28, 1173-1182.	8.9	103
61	TWO MORPHOLOGICAL FORMS OF CYLINDROSPERMOPSIS RACIBORSKII (CYANOBACTERIA) ISOLATED FROM SOLOMON DAM, PALM ISLAND, QUEENSLAND. Journal of Phycology, 1999, 35, 599-606.	2.3	100
62	A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia. Environmental Microbiology, 2001, 3, 669-679.	3.8	98
63	The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae, 2016, 54, 98-111.	4.8	98
64	On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genusNodularia. FEMS Microbiology Letters, 2001, 196, 207-214.	1.8	95
65	Monitoring Changing Toxigenicity of a Cyanobacterial Bloom by Molecular Methods. Applied and Environmental Microbiology, 2002, 68, 6070-6076.	3.1	92
66	A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology (United) Tj ETQq0 0	0 rgBT /C)verlock 10 Ti
67	A Putative Gene Cluster from a Lyngbya wollei Bloom that Encodes Paralytic Shellfish Toxin Biosynthesis. PLoS ONE, 2011, 6, e14657.	2.5	91
68	Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling, 2016, 32, 57-69.	2.2	87
69	Identification of a Saxitoxin Biosynthesis Gene with a History of Frequent Horizontal Gene Transfers. Journal of Molecular Evolution, 2008, 67, 526-538.	1.8	86
70	Genetic Characterization of Cylindrospermopsis raciborskii (Cyanobacteria) Isolates from Diverse Geographic Origins Based on nifH and cpcBA -IGS Nucleotide Sequence Analysis. Applied and Environmental Microbiology, 2002, 68, 2567-2571.	3.1	85
71	Evolutionary Affiliations Within the Superfamily of Ketosynthases Reflect Complex Pathway Associations. Journal of Molecular Evolution, 2003, 56, 446-457.	1.8	85
72	Does α-Amino-β-methylaminopropionic Acid (BMAA) Play a Role in Neurodegeneration?. International	2.6	85

Journal of Environmental Research and Public Health, 2011, 8, 3728-3746. ation . 72

#	Article	IF	CITATIONS
73	Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nature Communications, 2018, 9, 3096.	12.8	81
74	Functional Modeling and Phylogenetic Distribution of Putative Cylindrospermopsin Biosynthesis Enzymes. Journal of Molecular Evolution, 2006, 62, 267-280.	1.8	80
75	NtcA from <i>Microcystis aeruginosa</i> PCC 7806 Is Autoregulatory and Binds to the Microcystin Promoter. Applied and Environmental Microbiology, 2010, 76, 4362-4368.	3.1	80
76	High-Titer Heterologous Production in E. coli of Lyngbyatoxin, a Protein Kinase C Activator from an Uncultured Marine Cyanobacterium. ACS Chemical Biology, 2013, 8, 1888-1893.	3.4	77
77	A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae, 2012, 15, 19-25.	4.8	76
78	Nodularin, a cyanobacterial toxin, is synthesized <i>in planta</i> by symbiotic <i>Nostoc</i> sp ISME Journal, 2012, 6, 1834-1847.	9.8	75
79	Excitotoxic potential of the cyanotoxin β-methyl-amino-l-alanine (BMAA) in primary human neurons. Toxicon, 2012, 60, 1159-1165.	1.6	74
80	Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1323-1329.	1.7	73
81	BIOCHEMICAL CHARACTERIZATION OF PARALYTIC SHELLFISH TOXIN BIOSYNTHESIS IN VITRO. Journal of Phycology, 2007, 43, 497-508.	2.3	73
82	Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, <i>Cylindrospermopsis raciborskii</i> . FEMS Microbiology Ecology, 2014, 89, 135-148.	2.7	72
83	Community Composition, Toxigenicity, and Environmental Conditions during a Cyanobacterial Bloom Occurring along 1,100 Kilometers of the Murray River. Applied and Environmental Microbiology, 2012, 78, 263-272.	3.1	70
84	Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake AtitlA¡n, Guatemala, with a description of Limnoraphis gen. nov Fottea, 2013, 13, 39-52.	0.9	70
85	Soil-foraging animals alter the composition and co-occurrence of microbial communities in a desert shrubland. ISME Journal, 2015, 9, 2671-2681.	9.8	69
86	Genetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata). PLoS ONE, 2012, 7, e38253.	2.5	68
87	Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. Protist, 2013, 164, 237-244.	1.5	68
88	GENETIC CHARACTERIZATION OF STRAINS OF CYANOBACTERIA USING PCR-RFLP OF THE cpcBA INTERGENIC SPACER AND FLANKING REGIONS1. Journal of Phycology, 1996, 32, 445-451.	2.3	67
89	The FeL model of iron acquisition: Nondissociative reduction of ferric complexes in the marine environment. Limnology and Oceanography, 2006, 51, 1744-1754.	3.1	67
90	Insights into the distribution and abundance of the ubiquitous Candidatus Saccharibacteria phylum following tag pyrosequencing. Scientific Reports, 2014, 4, 3957.	3.3	66

#	Article	IF	CITATIONS
91	Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon, 2016, 119, 307-310.	1.6	66
92	Investigation of the Biosynthetic Potential of Endophytes in Traditional Chinese Anticancer Herbs. PLoS ONE, 2012, 7, e35953.	2.5	64
93	Culturable Endophytes of Medicinal Plants and the Genetic Basis for Their Bioactivity. Microbial Ecology, 2012, 64, 431-449.	2.8	64
94	Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genomics, 2014, 15, 83.	2.8	64
95	Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon, 2005, 46, 555-562.	1.6	63
96	The Phosphopantetheinyl Transferase Superfamily: Phylogenetic Analysis and Functional Implications in Cyanobacteria. Applied and Environmental Microbiology, 2006, 72, 2298-2305.	3.1	63
97	Biosynthesis of toxic naturally-occurring seafood contaminants. Toxicon, 2010, 56, 244-258.	1.6	63
98	Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology (United Kingdom), 2004, 150, 455-461.	1.8	61
99	Characteristics of a Microcystin-Degrading Bacterium under Alkaline Environmental Conditions. Journal of Toxicology, 2009, 2009, 1-8.	3.0	61
100	Cost-Effectiveness Analysis of Risk-Factor Guided and Birth-Cohort Screening for Chronic Hepatitis C Infection in the United States. PLoS ONE, 2013, 8, e58975.	2.5	61
101	Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Natural Product Reports, 2009, 26, 1447.	10.3	60
102	High abundance of the potentially maitotoxic dinoflagellate Gambierdiscus carpenteri in temperate waters of New South Wales, Australia. Harmful Algae, 2014, 39, 134-145.	4.8	60
103	Molecular Identification of Cyanobacteria Associated with Stromatolites from Distinct Geographical Locations. Astrobiology, 2002, 2, 271-280.	3.0	59
104	Multiple origins of the ascidian-Prochloron symbiosis: Molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution, 2006, 40, 8-19.	2.7	59
105	Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA). Scientific Reports, 2013, 3, 1482.	3.3	59
106	The Association of Mycobacterium avium subsp. paratuberculosis with Inflammatory Bowel Disease. PLoS ONE, 2016, 11, e0148731.	2.5	58
107	Identification of cyanobacteria and their toxigenicity in environmental samples by rapid molecular analysis. Environmental Toxicology, 2001, 16, 472-482.	4.0	57
108	Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Organic Geochemistry, 2010, 41, 1207-1218.	1.8	57

#	Article	IF	CITATIONS
109	Optimized Rapid Amplification of cDNA Ends (RACE) for Mapping Bacterial mRNA Transcripts. BioTechniques, 2000, 28, 448-456.	1.8	56
110	rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 505-512.	1.7	56
111	<i>Pseudovibrio denitrificans</i> strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiology Letters, 2007, 277, 188-196.	1.8	56
112	Development of Taxol and Other Endophyte Produced Anti-Cancer Agents. Recent Patents on Anti-Cancer Drug Discovery, 2008, 3, 14-19.	1.6	56
113	A novel prokaryotic <scp>l</scp> â€erginine:glycine amidinotransferase is involved in cylindrospermopsin biosynthesis. FEBS Journal, 2010, 277, 3844-3860.	4.7	55
114	Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles, 2006, 10, 363-372.	2.3	54
115	Comparative Protein Expression in Different Strains of the Bloom-forming Cyanobacterium Microcystis aeruginosa. Molecular and Cellular Proteomics, 2011, 10, M110.003749.	3.8	54
116	A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon, 2011, 57, 546-554.	1.6	54
117	Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Research, 2015, 69, 131-142.	11.3	54
118	Deep sequencing of non-ribosomal peptide synthetases and polyketide synthases from the microbiomes of Australian marine sponges. ISME Journal, 2013, 7, 1842-1851.	9.8	53
119	Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia coli. Applied and Environmental Microbiology, 2016, 82, 6167-6173.	3.1	53
120	Lipid biomarker analysis of cyanobacteria-dominated microbial mats in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Organic Geochemistry, 2009, 40, 258-269.	1.8	52
121	Effects of hydrology and river management on the distribution, abundance and persistence of cyanobacterial blooms in the Murray River, Australia. Harmful Algae, 2013, 30, 27-36.	4.8	52
122	Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon, 2006, 47, 271-278.	1.6	51
123	Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. Journal of Applied Microbiology, 2004, 97, 992-1000.	3.1	50
124	Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments. Water Research, 2008, 42, 4271-4280.	11.3	50
125	Radioreceptor Assays for Sensitive Detection and Quantitation of Saxitoxin and Its Analogues from Strains of the Freshwater Cyanobacterium,Anabaena circinalis. Environmental Science & Technology, 2001, 35, 1445-1451.	10.0	49
126	Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Research, 2005, 39, 5017-5026.	11.3	49

#	Article	IF	CITATIONS
127	Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environmental Microbiology, 2007, 9, 890-899.	3.8	49
128	Host Selection of Symbiotic Cyanobacteria in 31 Species of the Australian Cycad Genus: <i>Macrozamia</i> (Zamiaceae). Molecular Plant-Microbe Interactions, 2010, 23, 811-822.	2.6	49
129	How accurately can we detect Mycobacterium avium subsp. paratuberculosis infection?. Journal of Microbiological Methods, 2011, 85, 1-8.	1.6	49
130	DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Applied Microbiology and Biotechnology, 2011, 89, 761-769.	3.6	49
131	A universal procedure for primer labelling of amplicons. Nucleic Acids Research, 1997, 25, 2938-2939.	14.5	48
132	Vitamin B ₁₂ biosynthesis gene diversity in the Ross Sea: the identification of a new group of putative polar B ₁₂ biosynthesizers. Environmental Microbiology, 2011, 13, 1285-1298.	3.8	47
133	Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 798-802.	1.7	46
134	Osmoadaptive Strategies of the Archaeon <i>Halococcus hamelinensis</i> Isolated from a Hypersaline Stromatolite Environment. Astrobiology, 2011, 11, 529-536.	3.0	46
135	Biocrust morphology is linked to marked differences in microbial community composition. Plant and Soil, 2018, 429, 65-75.	3.7	46
136	The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiology Letters, 2000, 191, 159-167.	1.8	45
137	Specific Amplification and Restriction Polymorphisms of the Cyanobacterial rRNA Operon Spacer Region. Systematic and Applied Microbiology, 1997, 20, 612-621.	2.8	43
138	Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. Journal of Applied Phycology, 2004, 16, 237-243.	2.8	43
139	Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles, 2008, 12, 301-308.	2.3	43
140	The chemical composition and bacteria communities in acid and metalliferous drainage from the wet–dry tropics are dependent on season. Science of the Total Environment, 2013, 443, 65-79.	8.0	43
141	<i>Fodinomyces uranophilus</i> gen. nov. sp. nov. and <i>Coniochaeta fodinicola</i> sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia. Mycologia, 2014, 106, 1073-1089.	1.9	43
142	A feeding study to probe the uptake of Maitotoxin by snapper (Pagrus auratus). Harmful Algae, 2014, 37, 125-132.	4.8	43
143	Comparative Profiling and Discovery of Novel Glycosylated Mycosporine-Like Amino Acids in Two Strains of the Cyanobacterium Scytonema cf. crispum. Applied and Environmental Microbiology, 2016, 82, 5951-5959.	3.1	43
144	Insertion of anE. coli lacZgene inAcetobacter xylinusfor the production of cellulose in whey. FEMS Microbiology Letters, 2004, 231, 253-260.	1.8	42

#	Article	IF	CITATIONS
145	The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology (United Kingdom), 2006, 152, 3623-3631.	1.8	42
146	Global Protein-Level Responses of <i>Halobacterium salinarum</i> NRC-1 to Prolonged Changes in External Sodium Chloride Concentrations. Journal of Proteome Research, 2009, 8, 2218-2225.	3.7	42
147	Physiological and Proteomic Responses of Continuous Cultures of Microcystis aeruginosa PCC 7806 to Changes in Iron Bioavailability and Growth Rate. Applied and Environmental Microbiology, 2016, 82, 5918-5929.	3.1	42
148	A reinvestigation of saxitoxin production and sxtA in the â€~non-toxic' Alexandrium tamarense Group V clade. Harmful Algae, 2012, 18, 96-104.	4.8	41
149	Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Systems, 2009, 5, 4.	2.0	40
150	Exploring cyanobacterial genomes for natural product biosynthesis pathways. Marine Genomics, 2015, 21, 1-12.	1.1	40
151	Cyanobacterial Community Composition and Bacteria–Bacteria Interactions Promote the Stable Occurrence of Particle-Associated Bacteria. Frontiers in Microbiology, 2018, 9, 777.	3.5	40
152	Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient. Journal of Animal Ecology, 2016, 85, 1636-1646.	2.8	39
153	Genetic potential for secondary metabolite production in stromatolite communities. FEMS Microbiology Letters, 2005, 243, 293-301.	1.8	38
154	Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles, 2007, 11, 203-210.	2.3	38
155	Modern analogues and the early history of microbial life. Precambrian Research, 2009, 173, 10-18.	2.7	38
156	Constitutive Cylindrospermopsin Pool Size in Cylindrospermopsis raciborskii under Different Light and CO ₂ Partial Pressure Conditions. Applied and Environmental Microbiology, 2015, 81, 3069-3076.	3.1	38
157	Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms: a Review. Neurotoxicity Research, 2018, 33, 153-167.	2.7	38
158	Cyclooxygenase-2-Linked Attenuation of Hypoxia-Induced Pulmonary Hypertension and Intravascular Thrombosis. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 51-58.	2.5	37
159	Directing the Heterologous Production of Specific Cyanobacterial Toxin Variants. ACS Chemical Biology, 2017, 12, 2021-2029.	3.4	37
160	A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment. Journal of Water Supply: Research and Technology - AQUA, 2005, 54, 509-518.	1.4	36
161	Uranium Binding Mechanisms of the Acid-Tolerant Fungus <i>Coniochaeta fodinicola</i> . Environmental Science & Technology, 2015, 49, 8487-8496.	10.0	36
162	Comparative Proteomics Reveals That a Saxitoxin-Producing and a Nontoxic Strain of <i>Anabaena circinalis</i> Are Two Different Ecotypes. Journal of Proteome Research, 2014, 13, 1474-1484.	3.7	35

#	Article	IF	CITATIONS
163	Genome variation in nine co-occurring toxic Cylindrospermopsis raciborskii strains. Harmful Algae, 2018, 73, 157-166.	4.8	35
164	Deteriogenic cyanobacteria on historic buildings in Brazil detected by culture and molecular techniques. International Biodeterioration and Biodegradation, 2006, 57, 239-243.	3.9	34
165	ENHANCEMENT OF INTRACELLULAR SAXITOXIN ACCUMULATION BY LIDOCAINE HYDROCHLORIDE IN THE CYANOBACTERIUM CYLINDROSPERMOPSIS RACIBORSKII T3 (NOSTOCALES)1. Journal of Phycology, 2003, 39, 535-542.	2.3	33
166	Identification of an Na + -Dependent Transporter Associated with Saxitoxin-Producing Strains of the Cyanobacterium Anabaena circinalis. Applied and Environmental Microbiology, 2004, 70, 4711-4719.	3.1	33
167	Investigations into the taxonomy, toxicity and ecology of benthic cyanobacterial accumulations in Myall Lake, Australia. Marine and Freshwater Research, 2005, 56, 45.	1.3	33
168	Effects ofSaxitoxin (STX) and Veratridine on BacterialNa + -K + Fluxes: a Prokaryote-BasedSTXBioassay. Applied and Environmental Microbiology, 2003, 69, 7371-7376.	3.1	32
169	Viral Communities of Shark Bay Modern Stromatolites. Frontiers in Microbiology, 2018, 9, 1223.	3.5	32
170	Endolithic Phototrophs in Built and Natural Stone. Current Microbiology, 2012, 65, 183-188.	2.2	31
171	Polyphasic Detection of Cyanobacteria in Terrestrial Biofilms. Biofouling, 2004, 20, 71-79.	2.2	29
172	Elevation of Myeloperoxidase in Conjunction With Cardiac-Specific Markers After Marathon Running. American Journal of Clinical Pathology, 2006, 126, 888-893.	0.7	29
173	Characterization of the 2-Hydroxy-acid Dehydrogenase Mcyl, Encoded within the Microcystin Biosynthesis Gene Cluster of Microcystis aeruginosa PCC7806. Journal of Biological Chemistry, 2007, 282, 4681-4692.	3.4	29
174	The Molecular Genetics and Regulation of Cyanobacterial Peptide Hepatotoxin Biosynthesis. Critical Reviews in Toxicology, 2008, 38, 847-856.	3.9	29
175	Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Archives of Microbiology, 2010, 192, 1031-1038.	2.2	29
176	<i>Cob</i> gene pyrosequencing enables characterization of benthic dinoflagellate diversity and biogeography. Environmental Microbiology, 2014, 16, 467-485.	3.8	29
177	Insertions within the Saxitoxin Biosynthetic Gene Cluster Result in Differential Toxin Profiles. ACS Chemical Biology, 2018, 13, 3107-3114.	3.4	29
178	Characterization, Differentiation and Identification of Wild-type Cellulose-synthesizing Acetobacter strains Involved in Nata de Coco Production. Systematic and Applied Microbiology, 1998, 21, 599-608.	2.8	28
179	Localization of Symbiotic Cyanobacteria in the Colonial Ascidian Trididemnum miniatum (Didemnidae,) Tj ETQq1	1 8.78431	L4.rgBT /Ove
190	Structural analysis of an extracellular polysaccharide produced by a benzene tolerant bacterium,	0.0	97

2.3 27

#	Article	IF	CITATIONS
181	Diversity and Biosynthetic Potential of Culturable Microbes Associated with Toxic Marine Animals. Marine Drugs, 2013, 11, 2695-2712.	4.6	27
182	Specific global responses to N and Fe nutrition in toxic and nonâ€ŧoxic <i>Microcystis aeruginosa</i> . Environmental Microbiology, 2016, 18, 401-413.	3.8	27
183	Bioinformatic, phylogenetic and chemical analysis of the UVâ€absorbing compounds scytonemin and mycosporineâ€like amino acids from the microbial mat communities of Shark Bay, Australia. Environmental Microbiology, 2019, 21, 702-715.	3.8	27
184	Cytotoxic Effects of Environmental Toxins on Human Glial Cells. Neurotoxicity Research, 2017, 31, 245-258.	2.7	26
185	Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland. Hydrometallurgy, 2003, 71, 227-234.	4.3	25
186	Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought-affected soils. FEMS Microbiology Ecology, 2012, 80, 204-215.	2.7	25
187	Rapid, multiplex-tandem PCR assay for automated detection and differentiation of toxigenic cyanobacterial blooms. Molecular and Cellular Probes, 2013, 27, 208-214.	2.1	25
188	Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils. FEMS Microbiology Ecology, 2019, 95, .	2.7	25
189	Physiological metal uptake by Nostoc punctiforme. BioMetals, 2012, 25, 893-903.	4.1	24
190	Gene expression and molecular evolution of sxtA4 in a saxitoxin producing dinoflagellate Alexandrium catenella. Toxicon, 2014, 92, 102-112.	1.6	24
191	Advances in genomics, transcriptomics and proteomics of toxinâ€producing cyanobacteria. Environmental Microbiology Reports, 2016, 8, 3-13.	2.4	24
192	Improved methods for in situ enzymatic amplification and detection of low copy number genes in bacteria. FEMS Microbiology Letters, 2006, 152, 65-73.	1.8	23
193	Functional Analysis of PilT from the Toxic Cyanobacterium Microcystis aeruginosa PCC 7806. Journal of Bacteriology, 2007, 189, 1689-1697.	2.2	23
194	Characterization of PPT Ns , a Cyanobacterial Phosphopantetheinyl Transferase from Nodularia spumigena NSOR10. Journal of Bacteriology, 2007, 189, 3133-3139.	2.2	23
195	NifHgene diversity and expression in a microbial mat community on the McMurdo Ice Shelf, Antarctica. Antarctic Science, 2010, 22, 117-122.	0.9	23
196	Genome Sequence of the Halophilic Archaeon Halococcus hamelinensis. Journal of Bacteriology, 2012, 194, 2100-2101.	2.2	23
197	Adaptation, Ecology, and Evolution of the Halophilic Stromatolite Archaeon <i>Halococcus hamelinensis</i> Inferred through Genome Analyses. Archaea, 2015, 2015, 1-11.	2.3	23
198	Elevated <scp>N</scp> a ⁺ and <scp>pH</scp> influence the production and transport of saxitoxin in the cyanobacteria <scp><i>A</i></scp> <i>nabaena circinalis</i> â€ <scp>AWQC131C</scp> and <scp><i>C</i></scp> <i>CSequence of the cyanobacteria (scp) and saxitoxin in the cyanobacteria (scp) and saxitoxin in the cyanobacteria (scp) and (scp) an</i>	3.8	23

#	Article	IF	CITATIONS
199	Proteogenomics of a saxitoxinâ€producing and nonâ€toxic strain of <scp><i>A</i></scp> <i>nabaena circinalis</i> (cyanobacteria) in response to extracellular <scp>NaCl</scp> and phosphate depletion. Environmental Microbiology, 2016, 18, 461-476.	3.8	23
200	Detection and identification of cyanobacteria associated with toxic blooms: DNA amplification protocols. Phycologia, 1996, 35, 147-155.	1.4	22
201	The genetics and genomics of cyanobacterial toxicity. , 2008, 619, 417-452.		22
202	Differential accumulation of paralytic shellfish toxins from Alexandrium minutum in the pearl oyster, Pinctada imbricata. Toxicon, 2009, 54, 217-223.	1.6	22
203	Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120. Microbiology (United Kingdom), 2011, 157, 911-917.	1.8	22
204	Alexandrium diversaporum sp. nov., a new non-saxitoxin producing species: Phylogeny, morphology and sxtA genes. Harmful Algae, 2014, 31, 54-65.	4.8	22
205	Comparative genomics between human and animal associated subspecies of the Mycobacterium avium complex: a basis for pathogenicity. BMC Genomics, 2015, 16, 695.	2.8	22
206	Non-ribosomal peptide antibiotics. Expert Opinion on Therapeutic Patents, 2000, 10, 1583-1591.	5.0	21
207	Evidence for differences in the metabolism of saxitoxin and C1+2 toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii T3. Biochimica Et Biophysica Acta - General Subjects, 2004, 1674, 60-67.	2.4	21
208	Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia. Environmental Microbiology, 2013, 15, 1464-1475.	3.8	21
209	16S Ribosomal RNA Gene Sequence and Phylogeny of ToxicMicrocystissp. (Cyanobacteria). DNA Sequence, 1994, 4, 333-337.	0.7	20
210	Phenotype-Based Identification of Host Genes Required for Replication of African Swine Fever Virus. Journal of Virology, 2006, 80, 8705-8717.	3.4	20
211	Bioactive Natural Products from Papua New Guinea Marine Sponges. Chemistry and Biodiversity, 2012, 9, 2077-2095.	2.1	20
212	Re-evaluation of paralytic shellfish toxin profiles in cyanobacteria using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Toxicon, 2019, 158, 1-7.	1.6	20
213	Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains. Marine and Freshwater Research, 2020, 71, 701.	1.3	20
214	Microbial diversity and diazotrophy associated with the freshwater non-heterocyst forming cyanobacterium Lyngbya robusta. Journal of Applied Phycology, 2013, 25, 1039-1045.	2.8	19
215	PCR-based positive hybridization to detect genomic diversity associated with bacterial secondary metabolism. Nucleic Acids Research, 2004, 32, 7e-7.	14.5	18
216	Endolithic Phototrophs from an Active Geothermal Region in New Zealand. Geomicrobiology Journal, 2006, 23, 579-587.	2.0	18

#	Article	IF	CITATIONS
217	The <i>Synechocystis</i> sp. PCC6803 Sfpâ€Type Phosphopantetheinyl Transferase Does Not Possess Characteristic Broadâ€Range Activity. ChemBioChem, 2009, 10, 1869-1877.	2.6	18
218	Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. Journal of Photochemistry and Photobiology B: Biology, 2011, 102, 140-145.	3.8	18
219	Optimisation of DNA extraction and validation of PCR assays to detect Mycobacterium avium subsp. paratuberculosis. Journal of Microbiological Methods, 2015, 112, 99-103.	1.6	17
220	Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways. Natural Product Reports, 2019, 36, 1117-1136.	10.3	16
221	The molecular evolution and DNA profiling of toxic cyanobacteria. Current Issues in Molecular Biology, 2002, 4, 1-11.	2.4	16
222	<i>n</i> Butanol Purification of Dye Terminator Sequencing Reactions. BioTechniques, 1999, 26, 606-610.	1.8	15
223	Comparative gene expression of PSP-toxin producing and non-toxic Anabaena circinalis strains. Environment International, 2006, 32, 743-748.	10.0	15
224	DNA profiling of complex bacterial populations: toxic cyanobacterial blooms. Applied Microbiology and Biotechnology, 2009, 85, 237-252.	3.6	15
225	Global cellular responses to β-methyl-amino-l-alanine (BMAA) by olfactory ensheathing glial cells (OEC). Toxicon, 2015, 99, 136-145.	1.6	15
226	A Novel Method of Extracting Plasmid DNA fromHelicobacterSpecies. Helicobacter, 1998, 3, 269-277.	3.5	14
227	The Helicobacter pylori pyrB Gene Encoding Aspartate Carbamoyltransferase Is Essential for Bacterial Survival. Archives of Biochemistry and Biophysics, 2000, 380, 78-84.	3.0	14
228	Cyanobacteria from Brazilian Building Walls Are Distant Relatives of Aquatic Genera. OMICS A Journal of Integrative Biology, 2005, 9, 30-42.	2.0	14
229	Identification of Pilus-Like Structures and Genes in Microcystis aeruginosa PCC7806. Applied and Environmental Microbiology, 2005, 71, 7621-7625.	3.1	14
230	Molecular and cellular characterisation of the zinc uptake (Znu) system of <i>Nostoc punctiforme</i> . FEMS Microbiology Ecology, 2013, 86, 149-171.	2.7	14
231	Combined genetic and bioactivityâ€based prioritization leads to the isolation of an endophyteâ€derived antimycobacterial compound. Journal of Applied Microbiology, 2016, 120, 1229-1239.	3.1	14
232	Molecular and morphological survey of saxitoxin-producing cyanobacterium Dolichospermum circinale (Anabaena circinalis) isolated from geographically distinct regions of Australia. Toxicon, 2017, 138, 68-77.	1.6	14
233	Recent developments in quantitative PCR for monitoring harmful marine microalgae. Harmful Algae, 2021, 108, 102096.	4.8	14
234	Molecular Detection of Genes Responsible for Cyanobacterial Toxin Production in the Genera		13

<I>Microcystis</i>, <I>Nodularia</i>, and <I>Cylindrospermopsis</i>, 2004, 268, 213-222.

#	Article	IF	CITATIONS
235	Lack of Methylated Hopanoids Renders the Cyanobacterium Nostoc punctiforme Sensitive to Osmotic and pH Stress. Applied and Environmental Microbiology, 2017, 83, .	3.1	13
236	Increased methane production in cyanobacteria and methanogenic microbe co-cultures. Bioresource Technology, 2017, 243, 686-692.	9.6	13
237	Genome mining of a fungal endophyte of <i>Taxus yunnanensis</i> (Chinese yew) leads to the discovery of a novel azaphilone polyketide, lijiquinone. Microbial Biotechnology, 2020, 13, 1415-1427.	4.2	13
238	An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional δ-Opioid Receptor. Journal of Molecular and Cellular Cardiology, 2000, 32, 2187-2193.	1.9	12
239	Effects of synthetic local anaesthetics on the growth of the cyanobacterium Synechococcus leopoliensis. Journal of Applied Phycology, 2004, 16, 145-152.	2.8	12
240	Detection, Isolation, and Characterization of <i>Helicobacter</i> Species from the Gastrointestinal Tract of the Brushtail Possum. Applied and Environmental Microbiology, 2011, 77, 1581-1587.	3.1	12
241	Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Applied Microbiology and Biotechnology, 2013, 97, 8649-8662.	3.6	12
242	Uranium extraction from a low-grade, stockpiled, non-sulfidic ore: Impact of added iron and the native microbial consortia. Hydrometallurgy, 2017, 167, 81-91.	4.3	12
243	Towards a molecular taxonomy for the bloom-forming cyanobacteria. Marine and Freshwater Research, 1994, 45, 869.	1.3	11
244	Molecular identification and characterization of three isoforms of tachykinin NK1-like receptors in the cane toadBufo marinus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R575-R585.	1.8	11
245	Identification of two residues essential for the stringent substrate specificity and active site stability of the prokaryotic <scp>l</scp> â€arginine:glycine amidinotransferase CyrA. FEBS Journal, 2012, 279, 805-815.	4.7	11
246	Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
247	An <i>In Vitro</i> and <i>In Vivo</i> Study of Broad-Range Phosphopantetheinyl Transferases for Heterologous Expression of Cyanobacterial Natural Products. ACS Synthetic Biology, 2018, 7, 1143-1151.	3.8	11
248	Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. Journal of Microbiological Methods, 2021, 180, 106123.	1.6	11
249	A <i>Pseudoalteromonas</i> Clade with Remarkable Biosynthetic Potential. Applied and Environmental Microbiology, 2021, 87, .	3.1	11
250	Absence of detectable levels of the cyanobacterial toxin (microcystin-LR) carry-over into milk. Toxicon, 2002, 40, 1173-1180.	1.6	10
251	Small-Scale Preparation of the Single-Copy Bacterial Artificial Chromosome Vector pBeloBAC11. BioTechniques, 1998, 24, 568-572.	1.8	9
252	Use of ion-channel modulating agents to study cyanobacterial Na+-K+ fluxes. Biological Procedures Online, 2004, 6, 137-143.	2.9	9

#	Article	IF	CITATIONS
253	Molecular detection of hepatotoxic cyanobacteria in inland water bodies of the Marmara Region, Turkey. Advances in Oceanography and Limnology, 2017, 8, .	0.6	9
254	Molecular Classification of Commercial Spirulina Strains and Identification of Their Sulfolipid Biosynthesis Genes. Journal of Microbiology and Biotechnology, 2011, 21, 359-365.	2.1	9
255	Phenotypic niche partitioning and transcriptional responses of Microcystis aeruginosa in a spatially heterogeneous environment. Algal Research, 2019, 41, 101551.	4.6	8
256	Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria. Genome Biology and Evolution, 2021, 13, .	2.5	8
257	Characterization of the V3 Region of HIV-1 Isolates from Sydney, Australia. AIDS Research and Human Retroviruses, 1995, 11, 423-425.	1.1	7
258	Enzyme-Free Cloning of PCR Products and Fusion Protein Expression. , 2002, 192, 125-132.		7
259	Heterologous expression of the alcohol dehydrogenase (adhI) gene from Geobacillus thermoglucosidasius strain M10EXG. Journal of Biotechnology, 2008, 135, 127-133.	3.8	7
260	Alternariol 9-O-methyl ether. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1471-o1471.	0.2	7
261	Detection of Helicobacter species in the gastrointestinal tract of ringtail possum and koala: Possible influence of diet, on the gut microbiota. Veterinary Microbiology, 2013, 166, 429-437.	1.9	7
262	Zorbamycin has a different DNA sequence selectivity compared with bleomycin and analogues. Bioorganic and Medicinal Chemistry, 2016, 24, 6094-6101.	3.0	7
263	Physiological responses of the freshwater N 2 â€fixing cyanobacterium Raphidiopsis raciborskii to Fe and N availabilities. Environmental Microbiology, 2019, 21, 1211-1223.	3.8	7
264	Mutagenesis of the Microcystin Tailoring and Transport Proteins in a Heterologous Cyanotoxin Expression System. ACS Synthetic Biology, 2019, 8, 1187-1194.	3.8	7
265	Sequence Note : Sequence Analyses of the Reverse Transcriptase Region of HIV Type 1 Isolates from Sydney, Australia. AIDS Research and Human Retroviruses, 1996, 12, 1731-1732.	1.1	6
266	Screening, identification and kinetic characterization of a bacterium for Mn(II) uptake and oxidation. Biotechnology Letters, 2003, 25, 1407-1413.	2.2	6
267	Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria). Applied Microbiology and Biotechnology, 2017, 101, 3781-3800.	3.6	6
268	Contrasting effects of two mammalian soil engineers on microbial communities. Austral Ecology, 2017, 42, 380-384.	1.5	6
269	Heterologous Expression of an Unusual Ketosynthase, SxtA, Leads to Production of Saxitoxin Intermediates in <i>Escherichia coli</i> . ChemBioChem, 2021, 22, 845-849.	2.6	6
270	The Molecular Evolution and DNA Profiling of Toxic Cyanobacteria. Current Issues in Molecular Biology, 2002, , .	2.4	6

#	Article	IF	CITATIONS
271	Climate dictates microbial community composition and diversity in Australian biological soil crusts (biocrusts). Environmental Microbiology, 2022, 24, 5467-5482.	3.8	6
272	Direct PCR Sequencing of Dystrophin Polymorphic CACA Alleles after Purification to Remove Shadow Bands. DNA and Cell Biology, 1992, 11, 637-640.	1.9	5
273	Cyanobacterial Mats of the Meltwater Ponds on the McMurdo Ice Shelf (Antarctica). Cellular Origin and Life in Extreme Habitats, 2010, , 499-514.	0.3	5
274	Neurotoxic Alkaloids from Cyanobacteria. , 2013, , 39-83.		5
275	The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme. Applied Microbiology and Biotechnology, 2015, 99, 10559-10574.	3.6	5
276	Genome-Guided Discovery of Natural Products and Biosynthetic Pathways from Australia's Untapped Microbial Megadiversity. Australian Journal of Chemistry, 2016, 69, 129.	0.9	5
277	Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 2001, 35, 1-9.	2.7	5
278	An Improved Method for the Purification of Large DNA Fragments from Agarose Gels Using WizardPlusSV Columns. Analytical Biochemistry, 1999, 269, 218-219.	2.4	4
279	Quantitative detection of human- and canine-associated <i>Bacteroides</i> genetic markers from an urban coastal lagoon. Water Science and Technology, 2021, 84, 1732-1744.	2.5	4
280	Tailoring Enzyme Stringency Masks the Multispecificity of a Lyngbyatoxin (Indolactam Alkaloid) Nonribosomal Peptide Synthetase. ChemBioChem, 2021, , .	2.6	4
281	Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme. Journal of Applied Microbiology, 2015, 119, 1357-1370.	3.1	3
282	Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Applied Microbiology and Biotechnology, 2017, 101, 5089-5099.	3.6	3
283	Alternariol 9- <i>O</i> -methyl ether dimethyl sulfoxide monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, 0872-0873.	0.2	3
284	Comparative genomics for understanding intraspecific diversity: a case study of the cyanobacterium Raphidiopsis raciborskii. , 2022, , 415-434.		3
285	Heterologous Expression and Biochemical Analysis Reveal a Schizokinen-Based Siderophore Pathway in <i>Leptolyngbya</i> (Cyanobacteria). Applied and Environmental Microbiology, 2022, 88, e0237321.	3.1	3
286	Bacterial community structure and metabolic potential in microbialiteâ€forming mats from South Australian saline lakes. Geobiology, 2022, 20, 546-559.	2.4	3
287	Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression. BMC Microbiology, 2020, 20, 35.	3.3	2
288	Comparative proteomics of the toxigenic diazotroph Raphidiopsis raciborskii (cyanobacteria) in response to iron. Environmental Microbiology, 2021, 23, 405-414.	3.8	2

#	Article	IF	CITATIONS
289	A new species of cryptic cyanobacteria isolated from the epidermis of a bottlenose dolphin and as a bioaerosol. Phycologia, 2021, 60, 603-618.	1.4	2
290	Endophytes and the microbial genetics of traditional medicines. Microbiology Australia, 2010, 31, 60.	0.4	2
291	Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiology Reviews, 2012, , n/a-n/a.	8.6	2
292	Bioactive natural products from traditional Indonesian medicinal plant-associated fungi. Planta Medica, 2012, 78, .	1.3	2
293	On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia. FEMS Microbiology Letters, 2001, 196, 207-214.	1.8	2
294	Tâ€RFLP Fingerprinting Analysis of Bacterial Communities in Debris Cones, Northern Victoria Land, Antarctica. Permafrost and Periglacial Processes, 2012, 23, 244-248.	3.4	1
295	A multidrug efflux response to methyl viologen and acriflavine toxicity in the cyanobacterium Synechocystis sp. PCC6803. Journal of Applied Phycology, 2016, 28, 2793-2803.	2.8	1
296	Australian bush medicines harbour diverse microbial endophytes with broadâ€ s pectrum antibacterial activity. Journal of Applied Microbiology, 2021, 131, 2244-2256.	3.1	1
297	The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiology Letters, 2000, 191, 159-167.	1.8	1
298	Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR. FEMS Microbiology Letters, 1997, 153, 191-197.	1.8	1
299	Genome of an octopus-derived Pseudoalteromonas reveals unprecedented natural product biosynthesis gene clusters. Planta Medica, 2012, 78, .	1.3	1
300	Expression of Cyanobacterial Biosynthetic Gene Clusters in Escherichia coli. Methods in Molecular Biology, 2022, 2489, 315-332.	0.9	1
301	Stromatolites as a Resource for Novel Natural Products. Origins of Life and Evolution of Biospheres, 2007, 36, 623-624.	1.9	0
302	Session 18. Functional Complexity of Modern Stromatolites and Microbial Mats. Astrobiology, 2008, 8, 378-383.	3.0	0
303	Chapter 9. Mining Cyanobacterial Genomes for Drug-Like and Bioactive Natural Products. RSC Drug Discovery Series, 2012, , 159-197.	0.3	0
304	Unnatural production of natural products: Heterologous expression and combinatorial biosynthesis of novel cyanobacterial-derived compounds. Planta Medica, 2008, 74, .	1.3	0
305	The genetic basis for bioactivity in the traditional medicine plants of Australia. Planta Medica, 2008, 74, .	1.3	0
306	Genomic Contributions to Understanding the Evolution of Red Algal Plastids and Pigment Biosynthesis. Cellular Origin and Life in Extreme Habitats, 2010, , 261-273.	0.3	0

#	Article	IF	CITATIONS
307	Tyrocidine a from a haliclona sponge derived Vibrio sp. Planta Medica, 2012, 78, .	1.3	Ο
308	Deep sequencing of secondary meta-metabolomes: A preliminary screening tool for determining natural product diversity. Planta Medica, 2012, 78, .	1.3	0
309	Microbial Communities of Stromatolites. Cellular Origin and Life in Extreme Habitats, 2009, , 143-158.	0.3	Ο
310	<scp>2â€Methylhopanoids</scp> in geographically distinct, arid biological soil crusts are primarily cyanobacterial in origin. Environmental Microbiology Reports, 2022, 14, 164-169.	2.4	0