List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5329420/publications.pdf Version: 2024-02-01

Πυτρλ-Ευμο Cs

#	Article	lF	CITATIONS
1	The role of oxidative damage in the neuropathology of organic acidurias: Insights from animal studies. Journal of Inherited Metabolic Disease, 2004, 27, 427-448.	1.7	157
2	Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochemistry International, 2002, 40, 593-601.	1.9	103
3	D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. European Journal of Neuroscience, 2003, 17, 2017-2022.	1.2	95
4	Oxidative stress in patients with phenylketonuria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 68-73.	1.8	88
5	Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. NeuroReport, 2000, 11, 249-254.	0.6	86
6	In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metabolic Brain Disease, 2003, 18, 147-154.	1.4	84
7	Mitochondrial energy metabolism is markedly impaired by d-2-hydroxyglutaric acid in rat tissues. Molecular Genetics and Metabolism, 2005, 86, 188-199.	0.5	84
8	Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. NeuroReport, 2000, 11, 541-544.	0.6	82
9	Glutaric acid induces oxidative stress in brain of young rats. Brain Research, 2003, 964, 153-158.	1.1	79
10	Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 232-238.	1.8	79
11	Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by d-2-hydroxyglutaric acid in vitro. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 81-91.	1.8	77
12	In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochemistry International, 2007, 50, 83-94.	1.9	77
13	Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metabolic Brain Disease, 2006, 21, 279-286.	1.4	75
14	Inhibition of succinate dehydrogenase and ?-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats. Journal of Inherited Metabolic Disease, 1993, 16, 147-153.	1.7	73
15	Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. International Journal of Developmental Neuroscience, 2003, 21, 327-332.	0.7	73
16	α-Keto Acids Accumulating in Maple Syrup Urine Disease Stimulate Lipid Peroxidation and Reduce Antioxidant Defences in Cerebral Cortex From Young Rats. Metabolic Brain Disease, 2005, 20, 155-167.	1.4	69
17	Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metabolic Brain Disease, 2002, 17, 47-54.	1.4	63
18	Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. International Journal of Developmental Neuroscience, 2009, 27, 337-344.	0.7	63

#	Article	IF	CITATIONS
19	Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. Journal of the Neurological Sciences, 2000, 181, 44-49.	0.3	60
20	Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochemistry International, 2001, 38, 529-537.	1.9	60
21	Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze. Pharmacology Biochemistry and Behavior, 2002, 73, 623-629.	1.3	60
22	Investigation of oxidative stress parameters in treated phenylketonuric patients. Metabolic Brain Disease, 2006, 21, 287-296.	1.4	60
23	Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 344-352.	1.8	58
24	Experimental Evidence that Phenylalanine Provokes Oxidative Stress in Hippocampus and Cerebral Cortex of Developing Rats. Cellular and Molecular Neurobiology, 2010, 30, 317-326.	1.7	58
25	In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metabolic Brain Disease, 2011, 26, 21-28.	1.4	57
26	Inhibition of Brain Energy Metabolism by the Branched-chain Amino Acids Accumulating in Maple Syrup Urine Disease. Neurochemical Research, 2008, 33, 114-124.	1.6	56
27	Induction of oxidative stress by L-2-hydroxyglutaric acid in rat brain. Journal of Neuroscience Research, 2003, 74, 103-110.	1.3	55
28	Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. Journal of Neurochemistry, 2006, 99, 1531-1542.	2.1	55
29	Proline induces oxidative stress in cerebral cortex of rats. International Journal of Developmental Neuroscience, 2003, 21, 105-110.	0.7	53
30	Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radical Research, 2005, 39, 71-79.	1.5	52
31	Induction of Oxidative Stress by Chronic and Acute Glutaric Acid Administration to Rats. Cellular and Molecular Neurobiology, 2007, 27, 423-438.	1.7	51
32	GM1 ganglioside attenuates convulsions and thiobarbituric acid reactive substances production induced by the intrastriatal injection of methylmalonic acid. International Journal of Biochemistry and Cell Biology, 2003, 35, 465-473.	1.2	49
33	Promotion of oxidative stress by 3-hydroxyglutaric acid in rat striatum. Journal of Inherited Metabolic Disease, 2005, 28, 57-67.	1.7	49
34	Guanidinoacetate Decreases Antioxidant Defenses and Total Protein Sulfhydryl Content in Striatum of Rats. Neurochemical Research, 2008, 33, 1804-1810.	1.6	48
35	Benzophenones fromHypericumcarinatum. Journal of Natural Products, 2005, 68, 784-786.	1.5	47
36	Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. International Journal of Developmental Neuroscience, 2006, 24, 45-52.	0.7	47

#	Article	IF	CITATIONS
37	Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2005, 23, 695-701.	0.7	45
38	Inhibition of creatine kinase activity from rat cerebral cortex by -2-hydroxyglutaric acid in vitro. Neurochemistry International, 2004, 44, 45-52.	1.9	42
39	Î ³ -Hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochemistry International, 2007, 50, 564-570.	1.9	42
40	Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. Journal of the Neurological Sciences, 2010, 292, 89-95.	0.3	42
41	Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+,K+-ATPase activity in midbrain of rats subjected to arginine administration. Neurochemical Research, 2001, 26, 515-520.	1.6	41
42	Antioxidant Effect of Cysteamine in Brain Cortex of Young Rats. Neurochemical Research, 2008, 33, 737-744.	1.6	41
43	Protein and lipid damage in maple syrup urine disease patients: <scp>l</scp> â€carnitine effect. International Journal of Developmental Neuroscience, 2013, 31, 21-24.	0.7	40
44	Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metabolic Brain Disease, 2008, 23, 71-80.	1.4	39
45	Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochemical Research, 2002, 27, 353-357.	1.6	37
46	Evidence for a synergistic action of glutaric and 3â€hydroxyglutaric acids disturbing rat brain energy metabolism. International Journal of Developmental Neuroscience, 2007, 25, 391-398.	0.7	36
47	Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochemical Research, 2003, 28, 675-679.	1.6	35
48	Inhibition of energy metabolism in cerebral cortex of young rats by the medium-chain fatty acids accumulating in MCAD deficiency. Brain Research, 2004, 1030, 141-151.	1.1	35
49	L-carnitine Prevents Oxidative Stress in the Brains of Rats Subjected to a Chemically Induced Chronic Model of MSUD. Molecular Neurobiology, 2016, 53, 6007-6017.	1.9	35
50	Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Research, 2003, 968, 199-205.	1.1	34
51	5-Oxoproline Reduces Non-Enzymatic Antioxidant Defenses in vitro in Rat Brain. Metabolic Brain Disease, 2007, 22, 51-65.	1.4	34
52	In vivo and in vitro effects of proline on some parameters of oxidative stress in rat brain. Brain Research, 2003, 991, 180-186.	1.1	33
53	Tyrosine promotes oxidative stress in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2008, 26, 551-559.	0.7	32
54	Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain. Neurochemistry International, 2009, 54, 519-525.	1.9	32

#	Article	IF	CITATIONS
55	Acute administration of 5-oxoproline induces oxidative damage to lipids and proteins and impairs antioxidant defenses in cerebral cortex and cerebellum of young rats. Metabolic Brain Disease, 2010, 25, 145-154.	1.4	31
56	Promotion of oxidative stress by l-tryptophan in cerebral cortex of rats. Neurochemistry International, 2006, 49, 87-93.	1.9	30
57	Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metabolic Brain Disease, 2009, 24, 415-425.	1.4	30
58	Inhibition of energy productionin vitro by glutaric acid in cerebral cortex of young rats. Metabolic Brain Disease, 2000, 15, 123-131.	1.4	29
59	A chemically-induced acute model of maple syrup urine disease in rats for neurochemical studies. Journal of Neuroscience Methods, 2006, 155, 224-230.	1.3	29
60	Kynurenines Impair Energy Metabolism in Rat Cerebral Cortex. Cellular and Molecular Neurobiology, 2007, 27, 147-160.	1.7	29
61	Evidence that 3â€hydroxyâ€3â€methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex. Journal of Neuroscience Research, 2008, 86, 683-693.	1.3	29
62	Effects of 1,4-butanediol administration on oxidative stress in rat brain: Study of the neurotoxicity of γ-hydroxybutyric acid in vivo. Metabolic Brain Disease, 2009, 24, 271-282.	1.4	29
63	Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metabolic Brain Disease, 2015, 30, 1167-1174.	1.4	29
64	l-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 775, 43-47.	0.4	29
65	Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metabolic Brain Disease, 2016, 31, 529-537.	1.4	29
66	In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia. Brain Research, 2001, 923, 50-57.	1.1	28
67	Ascorbic acid prevents water maze behavioral deficits caused by early postnatal methylmalonic acid administration in the rat. Brain Research, 2003, 976, 234-242.	1.1	28
68	Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats. Metabolic Brain Disease, 2011, 26, 291-297.	1.4	28
69	Urinary biomarkers of oxidative damage in Maple syrup urine disease: The <scp>l</scp> arnitine role. International Journal of Developmental Neuroscience, 2015, 42, 10-14.	0.7	27
70	Effects of methylmalonate and propionate on uptake of glucose and ketone bodies in vitro by brain of developing rats. Biochemical Medicine and Metabolic Biology, 1991, 45, 56-64.	0.7	26
71	Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. International Journal of Developmental Neuroscience, 2003, 21, 111-116.	0.7	26
72	Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clinical Biochemistry, 2009, 42, 462-466.	0.8	26

#	Article	IF	CITATIONS
73	Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metabolic Brain Disease, 2012, 27, 79-89.	1.4	26
74	Ammonia potentiates methylmalonic acid-induced convulsions and TBARS production. Experimental Neurology, 2003, 182, 455-460.	2.0	25
75	Glutaric acid moderately compromises energy metabolism in rat brain. International Journal of Developmental Neuroscience, 2005, 23, 687-693.	0.7	25
76	Phenylpyruvic Acid Decreases Glucose-6-Phosphate Dehydrogenase Activity in Rat Brain. Cellular and Molecular Neurobiology, 2012, 32, 1113-1118.	1.7	25
77	Sulfite increases lipoperoxidation and decreases the activity of catalase in brain of rats. Metabolic Brain Disease, 2008, 23, 123-132.	1.4	24
78	Glycine Provokes Lipid Oxidative Damage and Reduces the Antioxidant Defenses in Brain Cortex of Young Rats. Cellular and Molecular Neurobiology, 2009, 29, 253-261.	1.7	24
79	Hypermethioninemia provokes oxidative damage and histological changes in liver of rats. Biochimie, 2009, 91, 961-968.	1.3	24
80	Chronic hyperhomocysteinemia induces oxidative damage in the rat lung. Molecular and Cellular Biochemistry, 2011, 358, 153-160.	1.4	24
81	Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metabolic Brain Disease, 2014, 29, 175-183.	1.4	24
82	Effects of methylmalonic and propionic acids on glutamate uptake by synaptosomes and synaptic vesicles and on glutamate release by synaptosomes from cerebral cortex of rats. Brain Research, 2001, 920, 194-201.	1.1	23
83	Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metabolic Brain Disease, 2003, 18, 129-137.	1.4	23
84	Inhibition of the Electron Transport Chain and Creatine Kinase Activity by Ethylmalonic Acid in Human Skeletal Muscle. Metabolic Brain Disease, 2006, 21, 11-19.	1.4	23
85	Redox imbalance influence in the myocardial Akt activation in aged rats treated with DHEA. Experimental Gerontology, 2010, 45, 957-963.	1.2	23
86	Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Molecular and Cellular Biochemistry, 2012, 364, 253-261.	1.4	23
87	Effect of leucine administration on creatine kinase activity in rat brain. Metabolic Brain Disease, 2003, 18, 17-25.	1.4	22
88	N â€Acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. International Journal of Developmental Neuroscience, 2007, 25, 317-324.	0.7	22
89	Erythrocyte glutathione peroxidase activity and plasma selenium concentration are reduced in maple syrup urine disease patients during treatment. International Journal of Developmental Neuroscience, 2007, 25, 335-338.	0.7	22
90	Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radical Research, 2008, 42, 707-715.	1.5	22

#	Article	IF	CITATIONS
91	Administration of Histidine to Female Rats Induces Changes in Oxidative Status in Cortex and Hippocampus of the Offspring. Neurochemical Research, 2012, 37, 1031-1036.	1.6	22
92	L-pyroglutamic acid inhibits energy production and lipid synthesis in cerebral cortex of young rats in vitro. Neurochemical Research, 2001, 26, 1277-1283.	1.6	21
93	Monosialoganglioside Increases Catalase Activity in Cerebral Cortex of Rats. Free Radical Research, 2004, 38, 495-500.	1.5	21
94	Age and Brain Structural Related Effects of Glutaric and 3-Hydroxyglutaric Acids on Glutamate Binding to Plasma Membranes During Rat Brain Development. Cellular and Molecular Neurobiology, 2007, 27, 805-818.	1.7	21
95	Tryptophan administration induces oxidative stress in brain cortex of rats. Metabolic Brain Disease, 2008, 23, 221-233.	1.4	21
96	Role of Catalase and Superoxide Dismutase Activities on Oxidative Stress in the Brain of a Phenylketonuria Animal Model and the Effect of Lipoic Acid. Cellular and Molecular Neurobiology, 2013, 33, 253-260.	1.7	21
97	Inhibition of Glutamate Uptake into Synaptic Vesicles from Rat Brain by 3-Nitropropionic Acid in Vitro. Experimental Neurology, 2001, 172, 250-254.	2.0	20
98	Proline reduces creatine kinase activity in the brain cortex of rats. Neurochemical Research, 2003, 28, 1175-1180.	1.6	20
99	Oxidative stress induction by <i>cis</i> -4-decenoic acid: Relevance for MCAD deficiency. Free Radical Research, 2007, 41, 1261-1272.	1.5	20
100	Prevention of DNA damage by l-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro. Gene, 2014, 548, 294-298.	1.0	20
101	Neonatal hyperglycemia induces oxidative stress in the rat brain: the role of pentose phosphate pathway enzymes and NADPH oxidase. Molecular and Cellular Biochemistry, 2015, 403, 159-167.	1.4	20
102	Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Research, 2009, 1291, 102-112.	1.1	19
103	Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats. Metabolic Brain Disease, 2009, 24, 283-298.	1.4	19
104	Chronic Exposure to β-Alanine Generates Oxidative Stress and Alters Energy Metabolism in Cerebral Cortex and Cerebellum of Wistar Rats. Molecular Neurobiology, 2018, 55, 5101-5110.	1.9	19
105	Proline administration decreases Na+,K+-ATPase activity in the synaptic plasma membrane from cerebral cortex of rats. Metabolic Brain Disease, 1999, 14, 265-272.	1.4	18
106	Inhibition of pyruvate kinase activity by cystine in brain cortex of rats. Brain Research, 2004, 1012, 93-100.	1.1	18
107	Evidence that antioxidants prevent the inhibition of Na+,K(+)-ATPase activity induced by octanoic acid in rat cerebral cortex in vitro. Neurochemical Research, 2003, 28, 1255-1263.	1.6	17
108	Inhibition of energy metabolism by 2-methylacetoacetate and 2-methyl-3-hydroxybutyrate in cerebral cortex of developing rats. Journal of Inherited Metabolic Disease, 2005, 28, 501-515.	1.7	17

#	Article	IF	CITATIONS
109	Protective effect of antioxidants on brain oxidative damage caused by proline administration. Neuroscience Research, 2005, 52, 69-74.	1.0	17
110	Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats. Metabolic Brain Disease, 2011, 26, 221-227.	1.4	17
111	Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver. Journal of Cellular Biochemistry, 2012, 113, 174-183.	1.2	17
112	Brain zinc chelation by diethyldithiocarbamate increased the behavioral and mitochondrial damages in zebrafish subjected to hypoxia. Scientific Reports, 2016, 6, 20279.	1.6	17
113	Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochemistry International, 2005, 46, 391-397.	1.9	16
114	The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. International Journal of Developmental Neuroscience, 2005, 23, 509-514.	0.7	16
115	Neuroprotective role of lipoic acid against acute toxicity of N-acetylaspartic acid. Molecular and Cellular Biochemistry, 2010, 344, 231-239.	1.4	16
116	Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochemical Research, 2002, 27, 947-952.	1.6	15
117	Effects of L-2-hydroxyglutaric acid on various parameters of the glutamatergic system in cerebral cortex of rats. Metabolic Brain Disease, 2003, 18, 233-243.	1.4	15
118	Alanine prevents the in vitro inhibition of glycolysis caused by phenylalanine in brain cortex of rats. Metabolic Brain Disease, 2003, 18, 87-94.	1.4	15
119	Effects of cysteamine on oxidative status in cerebral cortex of rats. Metabolic Brain Disease, 2008, 23, 81-93.	1.4	15
120	Dehydroepiandrosterone improves hepatic antioxidant reserve and stimulates Akt signaling in young and old rats. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 331-336.	1.2	15
121	Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment. Metabolic Brain Disease, 2014, 29, 609-15.	1.4	15
122	Creatine and Pyruvate Prevent the Alterations Caused by Tyrosine on Parameters of Oxidative Stress and Enzyme Activities of Phosphoryltransfer Network in Cerebral Cortex of Wistar Rats. Molecular Neurobiology, 2015, 51, 1184-1194.	1.9	15
123	Arginine administration reduces catalase activity in midbrain of rats. NeuroReport, 2002, 13, 1301-1304.	0.6	14
124	Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester. Pediatric Nephrology, 2007, 22, 1121-1128.	0.9	14
125	Evidence that 3â€hydroxyisobutyric acid inhibits key enzymes of energy metabolism in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2008, 26, 293-299.	0.7	14
126	Antioxidant treatment strategies for hyperphenylalaninemia. Metabolic Brain Disease, 2013, 28, 541-550.	1.4	14

#	Article	IF	CITATIONS
127	Diabetic encephalopathyâ€related depression: experimental evidence that insulin and clonazepam restore antioxidant status in rat brain. Cell Biochemistry and Function, 2014, 32, 711-719.	1.4	14
128	Voluntary Exercise Prevents Oxidative Stress in the Brain of Phenylketonuria Mice. JIMD Reports, 2015, 27, 69-77.	0.7	14
129	2-Hydroxybutyrate and 4-hydroxybutyrate inhibit CO2 formation from labeled substrates by rat cerebral cortex. Biochemical Society Transactions, 1995, 23, 228S-228S.	1.6	13
130	Chronic postnatal administration of methylmalonic acid provokes a decrease of myelin content and ganglioside N-acetylneuraminic acid concentration in cerebrum of young rats. Brazilian Journal of Medical and Biological Research, 2001, 34, 227-231.	0.7	13
131	Na+, K+ ATPase activity is markedly reduced by cis-4-decenoic acid in synaptic plasma membranes from cerebral cortex of rats. Experimental Neurology, 2006, 197, 143-149.	2.0	13
132	Neurochemical Evidence that the Metabolites Accumulating in 3-Methylcrotonyl-CoA Carboxylase Deficiency Induce Oxidative Damage in Cerebral Cortex of Young Rats. Cellular and Molecular Neurobiology, 2013, 33, 137-146.	1.7	13
133	Reduced Locomotor Activity of Rats Made Histidinemic by Injection of Histidine. Journal of Nutrition, 1989, 119, 1223-1227.	1.3	12
134	Tryptophan reduces creatine kinase activity in the brain cortex of rats. International Journal of Developmental Neuroscience, 2004, 22, 95-101.	0.7	12
135	Energy Metabolism is Compromised in Skeletal Muscle of Rats Chronically-Treated with Glutaric Acid. Metabolic Brain Disease, 2007, 22, 111-123.	1.4	12
136	Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Metabolic Brain Disease, 2012, 27, 595-603.	1.4	12
137	Inhibition of in vitro CO2 production and lipid synthesis by 2-hydroxybutyric acid in rat brain. Brazilian Journal of Medical and Biological Research, 2001, 34, 627-631.	0.7	11
138	Effects of histidine and imidazolelactic acid on various parameters of the oxidative stress in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2004, 22, 67-72.	0.7	11
139	Citrulline and Ammonia Accumulating in Citrullinemia Reduces Antioxidant Capacity of Rat Brain In Vitro. Metabolic Brain Disease, 2006, 21, 61-72.	1.4	11
140	Acute exercise in treated phenylketonuria patients: Physical activity and biochemical response. Molecular Genetics and Metabolism Reports, 2015, 5, 55-59.	0.4	11
141	An improved specific laboratory test for homocystinuria. Clinica Chimica Acta, 1982, 125, 367-369.	0.5	10
142	Inhibition of rat brain lipid synthesis in vitro by 4-hydroxybutyric acid. Metabolic Brain Disease, 1999, 14, 157-164.	1.4	10
143	Reduced Na+,K+-ATPase Activity in Erythrocyte Membranes from Patients with Phenylketonuria. Pediatric Research, 2001, 50, 56-60.	1.1	10
144	Kinetic studies on the inhibition of creatine kinase activity by branchedâ€chain αâ€amino acids in the brain cortex of rats. International Journal of Developmental Neuroscience, 2003, 21, 145-151.	0.7	10

#	Article	IF	CITATIONS
145	Influence of ketone bodies on oxidative stress parameters in brain of developing rats in vitro. Metabolic Brain Disease, 2008, 23, 411-425.	1.4	10
146	Effect of phenylalanine, <i>p</i> -chlorophenylalanine and α-methylphenylalanine on glucose uptake <i>in vitro</i> by the brain of young rats. Biochemical Society Transactions, 1990, 18, 419-419.	1.6	9
147	Possible high frequency of tetrahydrobiopterin deficiency in South Brazil. Journal of Inherited Metabolic Disease, 1994, 17, 223-229.	1.7	9
148	Effect of collection, transport, processing and storage of blood specimens on the activity of lysosomal enzymes in plasma and leukocytes. Brazilian Journal of Medical and Biological Research, 2000, 33, 1003-1013.	0.7	9
149	Evaluation of the effect of chronic administration of drugs on rat behavior in the water maze task. Brain Research Protocols, 2003, 12, 109-115.	1.7	9
150	Synaptic Plasma Membrane Na+, K+-ATPase Activity is Significantly Reduced by the α-Keto Acids Accumulating in Maple Syrup Urine Disease in Rat Cerebral Cortex. Metabolic Brain Disease, 2007, 22, 77-88.	1.4	9
151	Evidence that the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome induce oxidative stress in brain of young rats. International Journal of Developmental Neuroscience, 2009, 27, 635-641.	0.7	9
152	<scp>d</scp> â€Serine administration provokes lipid oxidation and decreases the antioxidant defenses in rat striatum. International Journal of Developmental Neuroscience, 2010, 28, 297-301.	0.7	9
153	Neonatal hyperglycemia induces cell death in the rat brain. Metabolic Brain Disease, 2018, 33, 333-342.	1.4	8
154	Effect of phenylalanine and p-chlorophenylalanine on Na+, K+-ATPase activity in the synaptic plasma membrane from the cerebral cortex of rats. Metabolic Brain Disease, 2000, 15, 105-114.	1.4	7
155	Evidence that 2-methylacetoacetate induces oxidative stress in rat brain. Metabolic Brain Disease, 2010, 25, 261-267.	1.4	7
156	Seven-year experience of a reference laboratory for detection of inborn errors of metabolism in Brazil. Journal of Inherited Metabolic Disease, 1991, 14, 400-402.	1.7	5
157	Inhibition of the mitochondrial respiratory chain by alanine in rat cerebral cortex. Metabolic Brain Disease, 2002, 17, 123-130.	1.4	5
158	Inhibition of mitochondrial creatine kinase activity by D-2-hydroxyglutaric acid in cerebellum of young rats. Neurochemical Research, 2003, 28, 1329-1337.	1.6	5
159	Inhibition of creatine kinase activity from rat cerebral cortex by 3-hydroxykynurenine. Brain Research, 2006, 1124, 188-196.	1.1	5
160	N-acetylaspartic acid impairs enzymatic antioxidant defenses and enhances hydrogen peroxide concentration in rat brain. Metabolic Brain Disease, 2010, 25, 251-259.	1.4	5
161	Enzymatic scavengers in the epididymal fluid: Comparison between pony and miniature breed stallions. Animal Reproduction Science, 2014, 151, 164-168.	0.5	5
162	Evaluation of Oxidative Stress Parameters and Energy Metabolism in Cerebral Cortex of Rats Subjected to Sarcosine Administration. Molecular Neurobiology, 2017, 54, 4496-4506.	1.9	5

DUTRA-FILHO, CS

#	Article	IF	CITATIONS
163	Inhibition of Creatine Kinase Activity by Cystine in the Kidney of Young Rats. Pediatric Research, 2006, 60, 190-195.	1.1	4
164	Inborn Errors of Metabolism. Clinical Pediatrics, 1989, 28, 494-497.	0.4	3
165	Inhibition of citrate oxidation in vitro by 2-hydroxybutyrate and 4-hydroxybutyrate in cerebral cortex of young rats. Biochemical Society Transactions, 1995, 23, 229S-229S.	1.6	3
166	Platelet Na+,K+-ATPase activity as a possible peripheral marker for the neurotoxic effects of phenylalanine in phenylketonuria. Metabolic Brain Disease, 2000, 15, 115-121.	1.4	3
167	Acute biochemical and physiological responses to swimming training series performed at intensities based on the 400-m front crawl speed. Sport Sciences for Health, 2018, 14, 633-638.	0.4	3
168	ExercÃcio aeróbico agudo restaura a concentração de triptofano em cérebro de ratos com hiperfenilalaninemia. Revista Brasileira De Medicina Do Esporte, 2012, 18, 338-340.	0.1	2
169	Chemically induced acute model of sarcosinemia in wistar rats. Metabolic Brain Disease, 2016, 31, 363-368.	1.4	2
170	Effects of Fish and Grape Seed Oils as Core of Haloperidol-Loaded Nanocapsules on Oral Dyskinesia in Rats. Neurochemical Research, 2018, 43, 477-487.	1.6	2
171	Influence of methylmalonate on the uptake of ketone bodies <i>in vitro</i> by the brain of young rats. Biochemical Society Transactions, 1990, 18, 421-422.	1.6	1
172	Effect of proline on creatine kinase activity in rat brain. Metabolic Brain Disease, 2003, 18, 169-177.	1.4	1
173	Preliminary results of PBA-loaded nanoparticles development and the effect on oxidative stress and neuroinflammation in rats submitted to a chemically induced chronic model of MSUD. Metabolic Brain Disease, 2021, 36, 1015-1027.	1.4	1