Konstantin Krukovskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5329181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of abc pressing temperature on the mechanical properties in Ti49.8Ni50.2 alloy. AIP Conference Proceedings, 2022, , .	0.4	0
2	Mechanical Properties of the Ti49.8Ni50.2 Alloy after Multi-Axial Forging at 573 K. Metals, 2022, 12, 1043.	2.3	0
3	Effect of abc Pressing at 573 K on the Microstructure and Martensite Transformation Temperatures in Ti49.8Ni50.2 (at%). Metals, 2021, 11, 1145.	2.3	4
4	Estimation of the Diffusion Coefficient of Doxorubicin Molecules in a Water Solution in the Volume of a Porous Carrier Medium. Russian Physics Journal, 2020, 62, 2319-2323.	0.4	1
5	Enhancement of Mechanical Stability of Silicon Macrospecimens Containing Hierarchically-Structured Porous Silicon. Russian Physics Journal, 2020, 63, 997-1002.	0.4	2
6	Effect of True Strains in Isothermal abc Pressing on Mechanical Properties of Ti49.8Ni50.2 Alloy. Metals, 2020, 10, 1313.	2.3	10
7	Potential and Capabilities of Porous Silicon as a Material for Intravascular Drug-Eluting Stents: Brief Summary. Inorganic Materials: Applied Research, 2020, 11, 287-296.	0.5	2
8	Simulation of three-point bending test of the silicon-coated nitinol bar. Procedia Structural Integrity, 2020, 25, 477-485.	0.8	0
9	The development of mechanically stable silicon macro-samples with hierarchically ordered porous structure area for using in medicine. AIP Conference Proceedings, 2020, , .	0.4	0
10	A new method of anticancer drugs activity screening with the use of laser interference microscopy. AIP Conference Proceedings, 2020, , .	0.4	0
11	Strength and fracture of tensile Ti49.8Ni50.2 alloy specimens after isothermal abc forging. AIP Conference Proceedings, 2020, , .	0.4	0
12	The Evolution of the Microstructure and System of Ti3Ni4 Particles upon Heat Treatments of a Tiâ^'50.9 at % Ni Nanocrystalline Alloy. Technical Physics, 2019, 64, 490-496.	0.7	4
13	Effect of heat treatments on the structure and properties of a small-diameter thin-walled tube of a medical nickel titanium alloy. Journal of Physics: Conference Series, 2019, 1347, 012085.	0.4	0
14	Silicon coating deposition on NiTi substrate by plasma immersion ion implantation and deposition. Journal of Physics: Conference Series, 2019, 1393, 012094.	0.4	0
15	Formation of the silicon coating on the NiTi substrate by magnetron sputtering. Journal of Physics: Conference Series, 2019, 1393, 012100.	0.4	0
16	The formation of porous structure in silicon by the methods of metal-assisted chemical etching and electrochemical etching. AIP Conference Proceedings, 2019, , .	0.4	0
17	Multiscale Deformation of Commercial Titanium and Tiä,€6Al-4V Alloy Subjected to Electron Beam Surface Treatment. Physical Mesomechanics, 2018, 21, 441-451.	1.9	32
18	Substructural-Phase Transformations during Heat Treatments of the Ti–50.9 at % Ni Nanocrystalline Alloy. Technical Physics Letters, 2018, 44, 1120-1123.	0.7	1

#	Article	IF	CITATIONS
19	Structure and properties of coatings obtained by plasma-immersion treatment with silicon ions of TiNi alloy. AIP Conference Proceedings, 2018, , .	0.4	1
20	Opportunities and prospects for the use of porous silicon to create a polymer-free drug coating on intravascular stents. AIP Conference Proceedings, 2018, , .	0.4	3
21	Effect of plasma ion immersion treatment on the structure and phase state of the TiNi alloy for medical implantants. Journal of Physics: Conference Series, 2018, 1115, 032027.	0.4	0
22	Strain-Induced Surface Roughening in Polycrystalline VT1-0 Titanium Specimens under Uniaxial Tension. Physical Mesomechanics, 2018, 21, 249-257.	1.9	5
23	Structural characteristics of copper nanoparticles produced by the electric explosion of wires with different structures of metal grains. Current Applied Physics, 2017, 17, 201-206.	2.4	16
24	Structure and properties of self-expanding intravascular NiTi stents doped with Si ions. Materials Today: Proceedings, 2017, 4, 4647-4651.	1.8	3
25	Effect of plasma immersion ion beam processing on the structure–phase state and the properties of the surface layers in titanium nickelide samples. Russian Metallurgy (Metally), 2017, 2017, 250-254.	0.5	2
26	Structural and phase transformations in TiNi treated in ion plasma. AIP Conference Proceedings, 2017, ,	0.4	1
27	Mechanical behavior of deformed intravascular NiTi stents differing in design. Numerical simulation. AIP Conference Proceedings, 2017, , .	0.4	2
28	The development of self-expanding peripheral stent with ion-modified surface layer. AIP Conference Proceedings, 2016, , .	0.4	0
29	Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues. AIP Conference Proceedings, 2016, , .	0.4	0
30	Hydrogen-induced failure of TiNi based alloy with coarse-grained and ultrafine-grained structure. Procedia Structural Integrity, 2016, 2, 1481-1488.	0.8	2
31	Plasma immersion ion implantation for surface treatment of complex branched structures. AIP Conference Proceedings, 2016, , .	0.4	2
32	Structural phase states in nickel-titanium surface layers doped with silicon by plasma immersion ion implantation. AIP Conference Proceedings, 2015, , .	0.4	5
33	The influence of degree of deformation under isothermal abc pressing on evolution of structure and temperature of phase transformations of alloy based on titanium nickelide. Inorganic Materials: Applied Research, 2015, 6, 96-104.	0.5	7
34	Regularities of the formation and the role of secondary structures in the improvement of the wear resistance of commercially pure titanium VT1-0. Journal of Friction and Wear, 2012, 33, 184-189.	0.5	2