Valentina A Moskvina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328752/publications.pdf

Version: 2024-02-01

56 350 10 papers citations h-index

10 18
h-index g-index

839053

57 57 all docs citations

57 times ranked 200 citing authors

#	Article	IF	Citations
1	Gradient transition zone structure in "steel–copper―sample produced by double wire-feed electron beam additive manufacturing. Journal of Materials Science, 2020, 55, 9258-9272.	1.7	62
2	The strain-rate dependence of the Hall-Petch effect in two austenitic stainless steels with different stacking fault energies. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 365-372.	2.6	58
3	Microstructure and grain growth inhomogeneity in austenitic steel produced by wire-feed electron beam melting: the effect of post-building solid-solution treatment. Journal of Materials Science, 2020, 55, 9211-9224.	1.7	41
4	Low-temperature tensile ductility by V-alloying of high-nitrogen CrMn and CrNiMn steels: Characterization of deformation microstructure and fracture micromechanisms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 265-278.	2.6	20
5	The microstructure, phase composition and tensile properties of austenitic stainless steel in a wire-feed electron beam melting combined with ultrasonic vibration. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141519.	2.6	19
6	A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal–mechanical treatments. Materials Letters, 2021, 285, 129073.	1.3	16
7	Anisotropy of the tensile properties in austenitic stainless steel obtained by wire-feed electron beam additive growth. Letters on Materials, 2019, 9, 460-464.	0.2	15
8	Stabilization of austenitic structure in transition zone of "austenitic stainless steel/NiCr alloy―joint fabricated by wire-feed electron beam melting. Materials Letters, 2020, 277, 128321.	1.3	14
9	Electron-beam additive manufacturing of high-nitrogen steel: Microstructure and tensile properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141951.	2.6	13
10	The effect of age-hardening mechanism on hydrogen embrittlement in high-nitrogen steels. International Journal of Hydrogen Energy, 2019, 44, 20529-20544.	3.8	11
11	Microstructure and mechanical properties of Nb-alloyed austenitic CrNi steel fabricated by wire-feed electron beam additive manufacturing. Materials Characterization, 2022, 190, 112063.	1.9	9
12	Effect of hydrogenation on mechanical properties and tensile fracture mechanism of a high-nitrogen austenitic steel. Journal of Materials Science, 2017, 52, 4224-4233.	1.7	7
13	Stable high-nickel austenitic steel produced by electron beam additive manufacturing using dual wire-feed system. Materials Letters, 2021, 305, 130863.	1.3	7
14	The Effect of Test Temperature on Deformation Microstructure and Fracture Mechanisms in CrMn High-Nitrogen Steels Alloyed (0-3 wt.%) with Vanadium. Materials Science Forum, 2018, 941, 27-32.	0.3	6
15	Effect of Ion-Plasma Nitriding on Phase Composition and Tensile Properties of AISI 321-Type Stainless Steel Produced by Wire-Feed Electron-Beam Additive Manufacturing. Metals, 2022, 12, 176.	1.0	5
16	Effect of Grain Refinement on the Elemental Composition and Nanohardness of the Surface Layers in AISI 316L Austenitic Steel Subjected to Ion-Plasma Hardening. Defect and Diffusion Forum, 0, 385, 267-272.	0.4	4
17	Microstructural inhomogeneity of phase composition and grain structure in electron beam wire-feed additive manufactured AISI 304 stainless steel. AIP Conference Proceedings, 2019, , .	0.3	4
18	THE EFFECT OF NIOBIUM ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTENITIC CrNi STEEL PRODUCED BY WIRE-FEED ELECTRON BEAM ADDITIVE MANUFACTURING. Nanoscience and Technology, 2020, 11, 109-118.	0.6	4

#	Article	IF	CITATIONS
19	Effect of vanadium-alloying on hydrogen embrittlement of austenitic high-nitrogen steels. Procedia Structural Integrity, 2018, 13, 1053-1058.	0.3	3
20	Effect of stacking fault energy on Hall–Petch relationship parameters of austenitic stainless steels. AIP Conference Proceedings, 2019, , .	0.3	3
21	On the Superplastic Deformation in Vanadium-Alloyed High-Nitrogen Steel. Metals, 2020, 10, 27.	1.0	3
22	Microstructure and mechanical properties of low-carbon steel fabricated by electron-beam additive manufacturing. Letters on Materials, 2021, 11, 427-432.	0.2	3
23	Microhardness homogeneity and microstructure of high-nitrogen austenitic steel processed by high-pressure torsion. AIP Conference Proceedings, 2017, , .	0.3	2
24	A comparative study of the macroscopical and microscopical fracture mechanisms in cast and additively manufactured austenitic stainless steels. AIP Conference Proceedings, 2019, , .	0.3	2
25	The Influence of Phase Composition and Phase Distribution on Crack Formation and Fracture Mechanisms of Cr–Ni Steels Produced by the Method of 3D Electron-Beam Printing. Russian Physics Journal, 2020, 63, 917-925.	0.2	2
26	On Temperature Dependence of Microstructure, Deformation Mechanisms and Tensile Properties in Austenitic Cr-Mn Steel with Ultrahigh Interstitial Content $C + N = 1.9$ Mass.%. Metals, 2020, 10, 786.	1.0	2
27	Microstructure and phase composition of vanadium-alloyed high-nitrogen steel fabricated by additive manufacturing. AIP Conference Proceedings, 2020, , .	0.3	2
28	The Effect of Phase Transformations During Electrom-Beam 3D-Printing and Post-Built Heat Treatment on Plastic Deformation and Fracture of Additively Manufactured High Nitrogen Cr–Mn Steel. Russian Physics Journal, 2021, 64, 1183-1190.	0.2	2
29	Influence of hydrogenation regime on structure, phase composition and mechanical properties of Fe18Cr9Ni0.5Ti0.08C steel in cold rolling. AIP Conference Proceedings, 2017, , .	0.3	1
30	Temperature Dependence of Tensile Deformation and Fracture Micromechanisms in V-Alloyed High-Nitrogen Steel: Effect of Solution-Treatment Temperature. Procedia Structural Integrity, 2018, 13, 1129-1134.	0.3	1
31	Influence of hydrogen-charging on microstructure and microhardness of high-nitrogen austenitic steel processed by high-pressure torsion. AIP Conference Proceedings, 2018, , .	0.3	1
32	The Influence of Warm abc-Pressing on the Structure and Mechanical Properties of Stable Chromium-Nickel-Molybdenum Steel. Russian Physics Journal, 2018, 61, 1062-1069.	0.2	1
33	On the influence of post-built heat treatment on strength and ductility of AISI 304 steel produced by electron-beam additive technology. AIP Conference Proceedings, 2019, , .	0.3	1
34	A variation of phase composition and microhardness of high nitrogen austenitic steel subjected to high-pressure torsion to different strain values. AIP Conference Proceedings, 2019, , .	0.3	1
35	The Effect of Thermo-Mechanical Processing Regime on High-Temperature Tensile Properties of V-Alloyed High-Nitrogen Steel. Solid State Phenomena, 2020, 306, 53-61.	0.3	1
36	The influence of prior deformation on phase composition and strength properties of austenitic stainless steel in ion-plasma treatment. Letters on Materials, 2019, 9, 377-381.	0.2	1

#	Article	IF	CITATIONS
37	Microstructure and phase composition of high-nitrogen steel fabricated by electron beam additive manufacturing. AIP Conference Proceedings, 2020, , .	0.3	1
38	Influence of thermal and thermal-mechanical treatments on microstructure and mechanical properties of the multicomponent alloy FeCrMnNiCo0.85C0.15. Letters on Materials, 2021, 11, 375-381.	0.2	1
39	Strain hardening and fracture behavior during tension of directionally solidified high-nitrogen austenitic steel. AIP Conference Proceedings, 2017, , .	0.3	0
40	Influence of thermomechanical treatments on mechanical properties and fracture mechanism of high-nitrogen austenitic steel. AIP Conference Proceedings, 2017, , .	0.3	0
41	Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies. AIP Conference Proceedings, 2017, , .	0.3	0
42	The effect of solution treatment regime on temperature dependence of 0.2% offset yield strength in V-alloyed high-nitrogen austenitic steel. AIP Conference Proceedings, 2018, , .	0.3	0
43	Effect of age hardening on phase composition and microhardness of V-free and V-alloyed high-nitrogen austenitic steels. AIP Conference Proceedings, 2018, , .	0.3	0
44	The effect of ion-plasma treatment on micromechanical characteristics of compositional layers in austenitic stainless steel with different grain sizes. AIP Conference Proceedings, 2019, , .	0.3	0
45	The effect of solid-solution temperature on phase composition and tensile properties of vanadium-alloyed high interstitial steels. AIP Conference Proceedings, 2019, , .	0.3	0
46	Influence of hydrogen saturation on the structure and mechanical properties of Fe-17Cr-13Ni-3Mo-0.01C austenitic steel during rolling at different temperatures. Metal Working and Material Science, 2021, 23, 81-97.	0.0	0
47	CHARACTERISTICS OF A GRADIENT MATERIAL BASED ON NI-CR STAINLESS STEEL AND H20N80 ALLOY PRODUCED BY ELECTRON-BEAM 3D-PRINTING. Vektor Nauki Tol Yattinskogo Gosudarstvennogo Universiteta, 2021, , 57-66.	0.1	0
48	On the influence of strain rate and deformation temperature on the peculiarities of plastic flow in vanadium-alloyed austenitic steel with high interstitial content. AIP Conference Proceedings, 2020, , .	0.3	0
49	Mechanical properties and fracture micromechanisms in 316L stainless steel subjected to ion-plasma treatment with mixture of N, H and Ar gases. AlP Conference Proceedings, 2020, , .	0.3	0
50	The change in solidification mode and phase composition in "321 stainless Steel/NiCr Alloy―joint produced by Wire-feed electron beam melting. AIP Conference Proceedings, 2020, , .	0.3	0
51	The peculiarities of hydrogen embrittlement of Nb-alloyed stainless steel fabricated by electron-beam additive manufacturing. AIP Conference Proceedings, 2020, , .	0.3	0
52	Peculiarities of tensile deformation and fracture of high-nitrogen steel obtained by electron beam additive manufacturing. AIP Conference Proceedings, 2020, , .	0.3	0
53	The influence of ion-plasma treatment on microhardness and tensile yield strength of austenitic stainless steel with different grain size and microstructure. AIP Conference Proceedings, 2020, , .	0.3	0
54	Microstructure/mechanical properties relationship in high-nitrogen steel obtained by electron beam additive manufacturing and conventional casting. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
55	The effect of V-alloying on microstructure peculiarities of high-nitrogen austenitic steels subjected to high-pressure torsion. AIP Conference Proceedings, 2020, , .	0.3	O
56	Hydrogen embrittlement of the additively manufactured Nb-free and Nb-alloyed austenitic steels. AIP Conference Proceedings, 2022, , .	0.3	0