
## Jacob S Yount

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328739/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inhibition of SARS-CoV-2 Infection by Human Defensin HNP1 and Retrocyclin RC-101. Journal of<br>Molecular Biology, 2022, 434, 167225.                                                                                      | 2.0 | 19        |
| 2  | BEX1 is a critical determinant of viral myocarditis. PLoS Pathogens, 2022, 18, e1010342.                                                                                                                                   | 2.1 | 0         |
| 3  | Influenza virus replication in cardiomyocytes drives heart dysfunction and fibrosis. Science Advances, 2022, 8, eabm5371.                                                                                                  | 4.7 | 11        |
| 4  | Caspase-4/11 exacerbates disease severity in SARS–CoV-2 infection by promoting inflammation and immunothrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202012119. | 3.3 | 25        |
| 5  | Recombinant MG53 Protein Protects Mice from Lethal Influenza Virus Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 254-257.                                                              | 2.5 | 15        |
| 6  | A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                  | 3.3 | 48        |
| 7  | Protein <i>S</i> -palmitoylation in immunity. Open Biology, 2021, 11, 200411.                                                                                                                                              | 1.5 | 23        |
| 8  | Moderately pathogenic maternal influenza A virus infection disrupts placental integrity but spares the fetal brain. Brain, Behavior, and Immunity, 2021, 96, 28-39.                                                        | 2.0 | 13        |
| 9  | SERINC proteins potentiate antiviral type I IFN production and proinflammatory signaling pathways.<br>Science Signaling, 2021, 14, eabc7611.                                                                               | 1.6 | 13        |
| 10 | A bioorthogonal chemical reporter for fatty acid synthase–dependent protein acylation. Journal of<br>Biological Chemistry, 2021, 297, 101272.                                                                              | 1.6 | 4         |
| 11 | Viral transport media for COVID-19 testing. MethodsX, 2021, 8, 101433.                                                                                                                                                     | 0.7 | 4         |
| 12 | Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2. Bioconjugate Chemistry, 2021, 32, 215-223.                                                                                                                   | 1.8 | 70        |
| 13 | Opposing activities of IFITM proteins in SARSâ€CoVâ€2 infection. EMBO Journal, 2021, 40, e106501.                                                                                                                          | 3.5 | 172       |
| 14 | Phosphor-IWS1-dependent U2AF2 splicing regulates trafficking of CAR-E-positive intronless gene mRNAs and sensitivity to viral infection. Communications Biology, 2021, 4, 1179.                                            | 2.0 | 2         |
| 15 | The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells. Journal of Biological Chemistry, 2020, 295, 1575-1586.                                       | 1.6 | 14        |
| 16 | MG53 suppresses interferon-l² and inflammation via regulation of ryanodine receptor-mediated intracellular calcium signaling. Nature Communications, 2020, 11, 3624.                                                       | 5.8 | 32        |
| 17 | Butyrate Reprograms Expression of Specific Interferon-Stimulated Genes. Journal of Virology, 2020, 94, .                                                                                                                   | 1.5 | 45        |
| 18 | Macaque interferon-induced transmembrane proteins limit replication of SHIV strains in an Envelope-dependent manner. PLoS Pathogens, 2019, 15, e1007925.                                                                   | 2.1 | 11        |

JACOB S YOUNT

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | IFITM3 protects the heart during influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18607-18612.                                                                             | 3.3  | 65        |
| 20 | Interferon-induced transmembrane proteins inhibit cell fusion mediated by trophoblast syncytins.<br>Journal of Biological Chemistry, 2019, 294, 19844-19851.                                                                                     | 1.6  | 53        |
| 21 | From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 382-394.                                                           | 1.9  | 71        |
| 22 | SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3798-E3807. | 3.3  | 88        |
| 23 | A balancing act between IFITM3 and IRF3. Cellular and Molecular Immunology, 2018, 15, 873-874.                                                                                                                                                   | 4.8  | 7         |
| 24 | Checks and Balances between Autophagy and Inflammasomes during Infection. Journal of Molecular<br>Biology, 2018, 430, 174-192.                                                                                                                   | 2.0  | 41        |
| 25 | Antiviral Protection by IFITM3 In Vivo. Current Clinical Microbiology Reports, 2018, 5, 229-237.                                                                                                                                                 | 1.8  | 70        |
| 26 | IFITM3 Restricts Human Metapneumovirus Infection. Journal of Infectious Diseases, 2018, 218, 1582-1591.                                                                                                                                          | 1.9  | 21        |
| 27 | Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells. Bioorganic and Medicinal Chemistry, 2017, 25, 2883-2887.                                                                                                     | 1.4  | 19        |
| 28 | The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. Journal of Biological Chemistry, 2017, 292, 21517-21526.                                                    | 1.6  | 74        |
| 29 | <scp>IFITM</scp> 3 requires an amphipathic helix for antiviral activity. EMBO Reports, 2017, 18, 1740-1751.                                                                                                                                      | 2.0  | 99        |
| 30 | Human Genetic Determinants of Viral Diseases. Annual Review of Genetics, 2017, 51, 241-263.                                                                                                                                                      | 3.2  | 117       |
| 31 | Natural mutations in <i><scp>IFITM</scp>3</i> modulate postâ€translational regulation and toggle<br>antiviral specificity. EMBO Reports, 2016, 17, 1657-1671.                                                                                    | 2.0  | 93        |
| 32 | Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proceedings of the United States of America, 2016, 113, 4302-4307.                                                                                   | 3.3  | 145       |
| 33 | SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nature Medicine, 2016, 22, 1072-1074.                                                                                                                         | 15.2 | 85        |
| 34 | A Putative Cyclin-binding Motif in Human SAMHD1 Contributes to Protein Phosphorylation,<br>Localization, and Stability. Journal of Biological Chemistry, 2016, 291, 26332-26342.                                                                 | 1.6  | 21        |
| 35 | Antibacterial Flavonoids from Medicinal Plants Covalently Inactivate Type III Protein Secretion Substrates. Journal of the American Chemical Society, 2016, 138, 2209-2218.                                                                      | 6.6  | 87        |
| 36 | Phosphorylation of mouse SAMHD1 regulates its restriction of human immunodeficiency virus type 1 infection, but not murine leukemia virus infection. Virology, 2016, 487, 273-284.                                                               | 1.1  | 27        |

JACOB S YOUNT

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | IFITMs from Mycobacteria Confer Resistance to Influenza Virus When Expressed in Human Cells.<br>Viruses, 2015, 7, 3035-3052.                                                                                                         | 1.5 | 22        |
| 38 | E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathogens, 2015, 11, e1005095.                                                                               | 2.1 | 98        |
| 39 | Phosphorylation of the Antiviral Protein Interferon-inducible Transmembrane Protein 3 (IFITM3)<br>Dually Regulates Its Endocytosis and Ubiquitination. Journal of Biological Chemistry, 2014, 289,<br>11986-11992.                   | 1.6 | 123       |
| 40 | Chemoproteomics reveals Toll-like receptor fatty acylation. BMC Biology, 2014, 12, 91.                                                                                                                                               | 1.7 | 66        |
| 41 | Regulation of the trafficking and antiviral activity of IFITM3 by post-translational modifications.<br>Future Microbiology, 2014, 9, 1151-1163.                                                                                      | 1.0 | 63        |
| 42 | Identification of Cellular Proteins Interacting with the Retroviral Restriction Factor SAMHD1.<br>Journal of Virology, 2014, 88, 5834-5844.                                                                                          | 1.5 | 92        |
| 43 | Emerging roles for protein S-palmitoylation in immunity from chemical proteomics. Current Opinion in Chemical Biology, 2013, 17, 27-33.                                                                                              | 2.8 | 32        |
| 44 | Palmitoylation on Conserved and Nonconserved Cysteines of Murine IFITM1 Regulates Its Stability and Anti-Influenza A Virus Activity. Journal of Virology, 2013, 87, 9923-9927.                                                       | 1.5 | 67        |
| 45 | S-Palmitoylation and Ubiquitination Differentially Regulate Interferon-induced Transmembrane<br>Protein 3 (IFITM3)-mediated Resistance to Influenza Virus. Journal of Biological Chemistry, 2012, 287,<br>19631-19641.               | 1.6 | 169       |
| 46 | Bioorthogonal proteomics of 15-hexadecynyloxyacetic acid chemical reporter reveals preferential targeting of fatty acid modified proteins and biosynthetic enzymes. Bioorganic and Medicinal Chemistry, 2012, 20, 650-654.           | 1.4 | 25        |
| 47 | Alkynyl-farnesol reporters for detection ofproteinS-prenylation in cells. Molecular BioSystems, 2011, 7, 67-73.                                                                                                                      | 2.9 | 46        |
| 48 | The Virion Host Shutoff Protein of Herpes Simplex Virus 1 Blocks the Replication-Independent<br>Activation of NF-κB in Dendritic Cells in the Absence of Type I Interferon Signaling. Journal of Virology,<br>2011, 85, 12662-12672. | 1.5 | 49        |
| 49 | Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection. PLoS Pathogens, 2011, 7, e1002345.                                                              | 2.1 | 90        |
| 50 | Visualization and Identification of Fatty Acylated Proteins Using Chemical Reporters. Current<br>Protocols in Chemical Biology, 2011, 3, 65-79.                                                                                      | 1.7 | 20        |
| 51 | Palmitoylome profiling reveals S-palmitoylation–dependent antiviral activity of IFITM3. Nature<br>Chemical Biology, 2010, 6, 610-614.                                                                                                | 3.9 | 314       |
| 52 | The Virion Host Shut-Off (vhs) Protein Blocks a TLR-Independent Pathway of Herpes Simplex Virus Type 1<br>Recognition in Human and Mouse Dendritic Cells. PLoS ONE, 2010, 5, e8684.                                                  | 1.1 | 36        |
| 53 | Visible Fluorescence Detection of Type III Protein Secretion from Bacterial Pathogens. Journal of the American Chemical Society, 2010, 132, 8244-8245.                                                                               | 6.6 | 16        |
| 54 | Robust Fluorescent Detection of Protein Fatty-Acylation with Chemical Reporters. Journal of the American Chemical Society, 2009, 131, 4967-4975.                                                                                     | 6.6 | 280       |

JACOB S YOUNT

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The tumour suppressor CYLD is a negative regulator of RIGâ€Iâ€mediated antiviral response. EMBO Reports,<br>2008, 9, 930-936.                                                                                                              | 2.0 | 296       |
| 56 | MDA5 Participates in the Detection of Paramyxovirus Infection and Is Essential for the Early<br>Activation of Dendritic Cells in Response to Sendai Virus Defective Interfering Particles. Journal of<br>Immunology, 2008, 180, 4910-4918. | 0.4 | 105       |
| 57 | Cytokine-Independent Upregulation of MDA5 in Viral Infection. Journal of Virology, 2007, 81, 7316-7319.                                                                                                                                    | 1.5 | 45        |
| 58 | Cytokine-Independent Upregulation of MDA5 in Viral Infection. Journal of Virology, 2007, 81, 9609-9609.                                                                                                                                    | 1.5 | 1         |
| 59 | Toll-Like Receptor-Independent Triggering of Dendritic Cell Maturation by Viruses. Journal of<br>Virology, 2006, 80, 3128-3134.                                                                                                            | 1.5 | 28        |
| 60 | Sendai Virus Infection Induces Efficient Adaptive Immunity Independently of Type I Interferons. Journal of Virology, 2006, 80, 4538-4545.                                                                                                  | 1.5 | 32        |
| 61 | A Novel Role for Viral-Defective Interfering Particles in Enhancing Dendritic Cell Maturation. Journal of Immunology, 2006, 177, 4503-4513.                                                                                                | 0.4 | 101       |