Tony Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Frontiers in Microbiology, 2017, 8, 922.	1.5	457
2	Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 2021, 752, 142168.	3.9	375
3	Hydrocarbon-degrading bacteria enriched by the <i>Deepwater Horizon</i> oil spill identified by cultivation and DNA-SIP. ISME Journal, 2013, 7, 2091-2104.	4.4	278
4	Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 2016, 118, 10-19.	1.1	259
5	Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nature Microbiology, 2016, 1, 16057.	5.9	173
6	Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnology Advances, 2018, 36, 26-46.	6.0	141
7	Agglomeration of nano- and microplastic particles in seawater by autochthonous and de novo-produced sources of exopolymeric substances. Marine Pollution Bulletin, 2018, 130, 258-267.	2.3	137
8	Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill. PLoS ONE, 2013, 8, e67717.	1.1	135
9	Polycyclovorans algicola gen. nov., sp. nov., an Aromatic-Hydrocarbon-Degrading Marine Bacterium Found Associated with Laboratory Cultures of Marine Phytoplankton. Applied and Environmental Microbiology, 2013, 79, 205-214.	1.4	113
10	Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 282-291.	0.6	111
11	Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 523-527.	0.8	108
12	Emulsifying and Metal Ion Binding Activity of a Glycoprotein Exopolymer Produced by <i>Pseudoalteromonas</i> sp. Strain TG12. Applied and Environmental Microbiology, 2008, 74, 4867-4876.	1.4	105
13	Use of Microorganisms in the Recovery of Oil From Recalcitrant Oil Reservoirs: Current State of Knowledge, Technological Advances and Future Perspectives. Frontiers in Microbiology, 2019, 10, 2996.	1.5	96
14	Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Frontiers in Bioengineering and Biotechnology, 2021, 9, 626639.	2.0	83
15	Polycyclic Aromatic Hydrocarbon Degradation of Phytoplankton-Associated Arenibacter spp. and Description of Arenibacter algicola sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium. Applied and Environmental Microbiology, 2014, 80, 618-628.	1.4	81
16	Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—An enzyme important in the detoxification of furfural during ethanol production. Journal of Biotechnology, 2006, 121, 154-164.	1.9	73
17	Porticoccus hydrocarbonoclasticus sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium Identified in Laboratory Cultures of Marine Phytoplankton. Applied and Environmental Microbiology, 2012, 78, 628-637.	1.4	73
18	Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Science of the Total Environment, 2021, 767, 144351.	3.9	72

#	Article	IF	CITATIONS
19	Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. Journal of Applied Microbiology, 2007, 103, 1716-1727.	1.4	70
20	Stable Isotope Probing of an Algal Bloom To Identify Uncultivated Members of the Rhodobacteraceae Associated with Low-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation. Applied and Environmental Microbiology, 2011, 77, 7856-7860.	1.4	70
21	Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2743-2749.	0.8	70
22	Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environmental Microbiology, 2016, 18, 1817-1833.	1.8	68
23	Reduction of Furfural to Furfuryl Alcohol by Ethanologenic Strains of Bacteria and Its Effect on Ethanol Production from Xylose. Applied Biochemistry and Biotechnology, 2002, 98-100, 327-340.	1.4	64
24	Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. BioMetals, 2012, 25, 1185-1194.	1.8	58
25	Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microbial Cell Factories, 2019, 18, 164.	1.9	51
26	Yield and physicochemical properties of EPS from <i>Halomonas</i> sp. strain TG39 identifies a role for protein and anionic residues (sulfate and phosphate) in emulsification of <i>n</i> â€hexadecane. Biotechnology and Bioengineering, 2009, 103, 207-216.	1.7	50
27	Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter. Applied Microbiology and Biotechnology, 2007, 76, 1017-1026.	1.7	48
28	Enhanced crude oil biodegradative potential of natural phytoplanktonâ€associated hydrocarbonoclastic bacteria. Environmental Microbiology, 2017, 19, 2843-2861.	1.8	47
29	Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Applied Microbiology and Biotechnology, 2018, 102, 8537-8549.	1.7	45
30	Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment, 2019, 671, 948-958.	3.9	43
31	Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris. Algal Research, 2017, 24, 368-377.	2.4	42
32	DNA-based stable isotope probing coupled with cultivation methods implicates Methylophaga in hydrocarbon degradation. Frontiers in Microbiology, 2014, 5, 76.	1.5	38
33	Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production. Journal of Applied Phycology, 2017, 29, 2831-2843.	1.5	36
34	Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Frontiers in Microbiology, 2017, 8, 676.	1.5	36
35	Role of methylotrophs in the degradation of hydrocarbons during the Deepwater Horizon oil spill. ISME Journal, 2014, 8, 2543-2545.	4.4	33
36	Emulsifying properties of a glycoprotein extract produced by a marine Flexibacter species strain TG382. Enzyme and Microbial Technology, 2009, 45, 53-57.	1.6	30

#	Article	IF	CITATIONS
37	Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments. Frontiers in Microbiology, 2015, 6, 695.	1.5	29
38	Hydrocarbon-degradation and MOS-formation capabilities of the dominant bacteria enriched in sea surface oil slicks during the Deepwater Horizon oil spill. Marine Pollution Bulletin, 2018, 135, 205-215.	2.3	29
39	Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys. Frontiers in Microbiology, 2017, 8, 896.	1.5	25
40	Priorities to inform research on marine plastic pollution in Southeast Asia. Science of the Total Environment, 2022, 841, 156704.	3.9	25
41	Toxicity Profiling of Biosurfactants Produced by Novel Marine Bacterial Strains. International Journal of Molecular Sciences, 2021, 22, 2383.	1.8	24
42	Changes in whole cell-derived fatty acids induced by benzene and occurrence of the unusual 16:1ï‰6c in Rhodococcus sp. 33. FEMS Microbiology Letters, 1999, 176, 213-218.	0.7	23
43	Identifying polycyclic aromatic hydrocarbon-degrading bacteria in oil-contaminated surface waters at Deepwater Horizon by cultivation, stable isotope probing and pyrosequencing. Reviews in Environmental Science and Biotechnology, 2011, 10, 301-305.	3.9	23
44	Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill. Microorganisms, 2016, 4, 24.	1.6	23
45	Diatom derived dissolved organic matter as a driver of bacterial productivity: The role of nutrient limitation. Journal of Experimental Marine Biology and Ecology, 2010, 391, 20-26.	0.7	22
46	Editorial: Microbial Exopolymers: Sources, Chemico-Physiological Properties, and Ecosystem Effects in the Marine Environment. Frontiers in Microbiology, 2018, 9, 1822.	1.5	17
47	Production and characterisation of a marine Halomonas surface-active exopolymer. Applied Microbiology and Biotechnology, 2020, 104, 1063-1076.	1.7	16
48	Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants. Microbiome, 2021, 9, 191.	4.9	16
49	Visualisation of the obligate hydrocarbonoclastic bacteria Polycyclovorans algicola and Algiphilus aromaticivorans in co-cultures with micro-algae by CARD-FISH. Journal of Microbiological Methods, 2018, 152, 73-79.	0.7	14
50	Development of a group-specific 16S rRNA-targeted probe set for the identification of Marinobacter by fluorescence in situ hybridization. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 360-367.	0.6	13
51	Starvation-Dependent Inhibition of the Hydrocarbon Degrader Marinobacter sp. TT1 by a Chemical Dispersant. Journal of Marine Science and Engineering, 2020, 8, 925.	1.2	12
52	Surfactants from the sea: rhamnolipid production by marine bacteria. Access Microbiology, 2019, 1, .	0.2	12
53	Surface-active biopolymers from marine bacteria for potential biotechnological applications. AIMS Microbiology, 2016, 2, 92-107.	1.0	12
54	Current status of deepwater oil spill modelling in the Faroe-Shetland Channel, Northeast Atlantic, and future challenges. Marine Pollution Bulletin, 2018, 127, 484-504.	2.3	11

#	Article	IF	CITATIONS
55	Chemical Dispersant Enhances Microbial Exopolymer (EPS) Production and Formation of Marine Oil/Dispersant Snow in Surface Waters of the Subarctic Northeast Atlantic. Frontiers in Microbiology, 2019, 10, 553.	1.5	11
56	Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms, 2021, 9, 3.	1.6	11
57	Hydrocarbon-Degrading Bacteria Found Tightly Associated with the 50–70 μm Cell-Size Population of Eukaryotic Phytoplankton in Surface Waters of a Northeast Atlantic Region. Microorganisms, 2020, 8, 1955.	1.6	10
58	Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. MBio, 2021, 12, .	1.8	10
59	Comparative benzene-induced fatty acid changes in a Rhodococcus species and its benzene-sensitive mutant: possible role of myristic and oleic acids in tolerance. Journal of Chemical Ecology, 2003, 29, 2369-2378.	0.9	9
60	Genome Sequence of <i>Porticoccus hydrocarbonoclasticus</i> Strain MCTG13d, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton. Genome Announcements, 2015, 3, .	0.8	9
61	Specific enrichment of hydrocarbonclastic bacteria from diesel-amended soil on biochar particles. Science of the Total Environment, 2021, 762, 143084.	3.9	9
62	Marine, Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Overview. , 2019, , 143-152.		9
63	Marine, Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Overview. , 2017, , 1-10.		9
64	Genome Sequence of <i>Arenibacter algicola</i> Strain TG409, a Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton. Genome Announcements, 2016, 4, .	0.8	8
65	Exploration of marine bacterioplankton community assembly mechanisms during chemical dispersant and surfactantâ€assisted oil biodegradation. Ecology and Evolution, 2021, 11, 13862-13874.	0.8	7
66	Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination. , 2019, , 337-352.		7
67	Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Xanthomonadales. , 2019, , 191-205.		7
68	Genome Sequence of <i>Halomonas</i> sp. Strain MCTG39a, a Hydrocarbon-Degrading and Exopolymeric Substance-Producing Bacterium. Genome Announcements, 2015, 3, .	0.8	6
69	Analysis of Benzene-Induced Effects onRhodococcussp. 33 Reveals that Constitutive Processes Play a Major Role in Conferring Tolerance. Scientific World Journal, The, 2009, 9, 209-223.	0.8	5
70	Cultivating Aerobic Hydrocarbon-Degrading Bacteria from Micro-algae. Springer Protocols, 2014, , 95-106.	0.1	5
71	Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Porticoccus. , 2019, , 181-189.		5
72	Genome Sequence of Polycyclovorans algicola Strain TG408, an Obligate Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Associated with Marine Eukaryotic Phytoplankton. Genome Announcements, 2015, 3, .	0.8	4

#	Article	IF	CITATIONS
73	Effect of pot-ale enrichment on the treatment efficiency of primary settled wastewater by the microalga Chlorella vulgaris. Journal of Cleaner Production, 2021, 327, 129436.	4.6	4
74	Genome Sequence of <i>Oceanicola</i> sp. Strain MCTG156(1a), Isolated from a Scottish Coastal Phytoplankton Net Sample. Genome Announcements, 2017, 5, .	0.8	3
75	Occurrence and Roles of the Obligate Hydrocarbonoclastic Bacteria in the Ocean When There Is No Obvious Hydrocarbon Contamination. , 2018, , 1-17.		3
76	Detection of hydrocarbon-degrading bacteria on deepwater corals of the northeast Atlantic using CARD-FISH. Journal of Microbiological Methods, 2021, 187, 106277.	0.7	3
77	Marine hydrocarbon-degrading bacteria: their role and application in oil-spill response and enhanced oil recovery. , 2022, , 591-600.		3
78	Searching for new bacterial species that break down polyaromatic hydrocarbons in coastal and oceanic waters. Reviews in Environmental Science and Biotechnology, 2010, 9, 205-209.	3.9	2
79	Uncovering Microbial Hydrocarbon Degradation Processes: The Promise of Stable Isotope Probing. Springer Oceanography, 2020, , 183-199.	0.2	2
80	Isolation of Glycoprotein Bioemulsifiers Produced by Marine Bacteria. Springer Protocols, 2015, , 61-74.	0.1	1
81	Genome Sequence of Marinobacter sp. Strain MCTG268 Isolated from the Cosmopolitan Marine Diatom Skeletonema costatum. Genome Announcements, 2016, 4, .	0.8	1
82	Genome Sequence of <i>Roseovarius</i> sp. Strain MCTG156(2b) Isolated from a Phytoplankton Net Trawl on the Scottish West Coast. Genome Announcements, 2017, 5, .	0.8	1
83	Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Porticoccus. , 2017, , 1-9.		1
84	Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris. New Biotechnology, 2016, 33, S56.	2.4	0
85	Characterising Biosurfactants and Bioemulsifiers from Marine Bacteria: Structural, Functional and Biological Properties. , 0, , .		0