
Hitoshi Okazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 1990, 60, 461-472.	13.5	714
2	Cystathionine βâ€synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB Journal, 2005, 19, 1854-1856.	0.2	209
3	Interaction between Mutant Ataxin-1 and PQBP-1 Affects Transcription and Cell Death. Neuron, 2002, 34, 701-713.	3.8	182
4	JNK activation is associated with intracellular \hat{l}^2 -amyloid accumulation. Molecular Brain Research, 2000, 85, 221-233.	2.5	162
5	Dopaminergic stimulation upâ€regulates the in vivo expression of brainâ€derived neurotrophic factor (BDNF) in the striatum. FEBS Letters, 1992, 313, 138-142.	1.3	128
6	In-frame Dystrophin Following Exon 51-Skipping Improves Muscle Pathology and Function in the Exon 52–Deficient mdx Mouse. Molecular Therapy, 2010, 18, 1995-2005.	3.7	118
7	HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Scientific Reports, 2016, 6, 31895.	1.6	111
8	Mutant huntingtin impairs Ku70-mediated DNA repair. Journal of Cell Biology, 2010, 189, 425-443.	2.3	110
9	Mutant Huntingtin Promotes the Fibrillogenesis of Wild-type Huntingtin. Journal of Biological Chemistry, 2003, 278, 41452-41461.	1.6	107
10	Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nature Cell Biology, 2007, 9, 402-414.	4.6	97
11	Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. Journal of Cell Biology, 2006, 172, 589-604.	2.3	84
12	Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochemical and Biophysical Research Communications, 2008, 376, 128-133.	1.0	78
13	The Induction Levels of Heat Shock Protein 70 Differentiate the Vulnerabilities to Mutant Huntingtin among Neuronal Subtypes. Journal of Neuroscience, 2007, 27, 868-880.	1.7	77
14	Comprehensive phosphoproteome analysis unravels the core signaling network that initiates the earliest synapse pathology in preclinical Alzheimer's disease brain. Human Molecular Genetics, 2015, 24, 540-558.	1.4	70
15	Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications, 2021, 12, 6565.	5.8	70
16	Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO Journal, 2010, 29, 2446-2460.	3.5	68
17	<scp>HMGB</scp> 1 facilitates repair of mitochondrial <scp>DNA</scp> damage and extends the lifespan of mutant ataxinâ€1 knockâ€in mice. EMBO Molecular Medicine, 2015, 7, 78-101.	3.3	66
18	Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture. Biochemical and Biophysical Research Communications, 2010, 400, 461-465.	1.0	62

ΗΙΤΟSΗΙ ΟΚΑΖΑWA

#	Article	IF	CITATIONS
19	YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nature Communications, 2020, 11, 507.	5.8	62
20	A functional deficiency of TERA/VCP/p97 contributes to impaired DNA repair in multiple polyglutamine diseases. Nature Communications, 2013, 4, 1816.	5.8	60
21	Fasting activates macroautophagy in neurons of Alzheimer's disease mouse model but is insufficient to degrade amyloid-beta. Scientific Reports, 2015, 5, 12115.	1.6	56
22	Copy-number variations on the X chromosome in Japanese patients with mental retardation detected by array-based comparative genomic hybridization analysis. Journal of Human Genetics, 2010, 55, 590-599.	1.1	55
23	Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo. Molecular Brain Research, 2004, 132, 18-30.	2.5	51
24	Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain. Acta Radiologica Open, 2017, 6, 205846011770381.	0.3	46
25	Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. Journal of Neurochemistry, 2003, 87, 257-267.	2.1	44
26	The intellectual disability gene PQBP1 rescues Alzheimer's disease pathology. Molecular Psychiatry, 2018, 23, 2090-2110.	4.1	41
27	Polar Amino Acid-Rich Sequences Bind to Polyglutamine Tracts. Biochemical and Biophysical Research Communications, 1998, 253, 16-20.	1.0	39
28	Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology. Human Molecular Genetics, 2016, 25, ddw303.	1.4	38
29	PQBP-1 transgenic mice show a late-onset motor neuron disease-like phenotype. Human Molecular Genetics, 2003, 12, 711-725.	1.4	35
30	Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. Human Molecular Genetics, 2012, 21, 1099-1110.	1.4	33
31	Distinct aggregation and cell death patterns among different types of primary neurons induced by mutant huntingtin protein. Journal of Neurochemistry, 2004, 89, 974-987.	2.1	30
32	Dynamic Changes of the Phosphoproteome in Postmortem Mouse Brains. PLoS ONE, 2011, 6, e21405.	1.1	30
33	Mutations in the PQBP1 gene prevent its interaction with the spliceosomal protein U5–15kD. Nature Communications, 2014, 5, 3822.	5.8	30
34	Glial Cell Lineage Expression of Mutant Ataxin-1 and Huntingtin Induces Developmental and Late-Onset Neuronal Pathologies in Drosophila Models. PLoS ONE, 2009, 4, e4262.	1.1	30
35	Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease. European Journal of Neuroscience, 2008, 28, 30-40.	1.2	29
36	PQBP-1 is expressed predominantly in the central nervous system during development. European Journal of Neuroscience, 2005, 22, 1277-1286.	1.2	28

ΗΙΤΟSHI OKAZAWA

#	Article	IF	CITATIONS
37	A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathologica Communications, 2017, 5, 19.	2.4	28
38	PQBP-1 (Np/PQ): a polyglutamine tract-binding and nuclear inclusion-forming protein. Brain Research Bulletin, 2001, 56, 273-280.	1.4	27
39	Knock-down of PQBP1 impairs anxiety-related cognition in mouse. Human Molecular Genetics, 2009, 18, 4239-4254.	1.4	27
40	Chronic cerebral hypoperfusion shifts the equilibrium of amyloid \hat{I}^2 oligomers to aggregation-prone species with higher molecular weight. Scientific Reports, 2019, 9, 2827.	1.6	27
41	Progressive decrease in the level of YAPdeltaCs, prosurvival isoforms of YAP, in the spinal cord of transgenic mouse carrying a mutant <i>SOD1</i> gene. Journal of Neuroscience Research, 2009, 87, 928-936.	1.3	25
42	Ku70 Alleviates Neurodegeneration in Drosophila Models of Huntington's Disease. PLoS ONE, 2011, 6, e27408.	1.1	25
43	<i>Drosophila</i> PQBP1 Regulates Learning Acquisition at Projection Neurons in Aversive Olfactory Conditioning. Journal of Neuroscience, 2010, 30, 14091-14101.	1.7	24
44	Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nature Communications, 2018, 9, 433.	5.8	23
45	Loss of yata, a Novel Gene Regulating the Subcellular Localization of APPL, Induces Deterioration of Neural Tissues and Lifespan Shortening. PLoS ONE, 2009, 4, e4466.	1.1	22
46	Polyglutamine tract binding protein-1 is an intrinsically unstructured protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 936-943.	1.1	22
47	Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1. Human Molecular Genetics, 2014, 23, 1345-1364.	1.4	22
48	Drebrin-like (Dbnl) Controls Neuronal Migration via Regulating N-Cadherin Expression in the Developing Cerebral Cortex. Journal of Neuroscience, 2019, 39, 678-691.	1.7	22
49	Hepatoma-derived growth factor, a new trophic factor for motor neurons, is up-regulated in the spinal cord of PQBP-1 transgenic mice before onset of degeneration. Journal of Neurochemistry, 2006, 99, 70-83.	2.1	21
50	Intracellular amyloid hypothesis for ultraâ€early phase pathology of Alzheimer's disease. Neuropathology, 2021, 41, 93-98.	0.7	21
51	Nematode Homologue of PQBP1, a Mental Retardation Causative Gene, Is Involved in Lipid Metabolism. PLoS ONE, 2009, 4, e4104.	1.1	21
52	The XLID Protein PQBP1 and the GTPase Dynamin 2 Define a Signaling Link that Orchestrates Ciliary Morphogenesis in Postmitotic Neurons. Cell Reports, 2013, 4, 879-889.	2.9	19
53	Expression of human PQBP-1 inDrosophilaimpairs long-term memory and induces abnormal courtship. FEBS Letters, 2006, 580, 2335-2340.	1.3	17
54	Molecular cloning and expression of a novel truncated form of chicken trkC. FEBS Letters, 1993, 329, 171-177.	1.3	16

ΗΙΤΟSHI OKAZAWA

#	Article	IF	CITATIONS
55	Solution Model of the Intrinsically Disordered Polyglutamine Tract-Binding Protein-1. Biophysical Journal, 2012, 102, 1608-1616.	0.2	16
56	Polyglutamine tract-binding protein-1 binds to U5-15kD via a continuous 23-residue segment of the C-terminal domain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1500-1507.	1.1	15
57	Sox2 Transcriptionally Regulates Pqbp1, an Intellectual Disability-Microcephaly Causative Gene, in Neural Stem Progenitor Cells. PLoS ONE, 2013, 8, e68627.	1.1	15
58	Segmental isotopeâ€labeling of the intrinsically disordered protein PQBP1. FEBS Letters, 2014, 588, 4583-4589.	1.3	15
59	RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhances DNA damage repair. Human Molecular Genetics, 2016, 25, ddw272.	1.4	15
60	PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases. Neurochemistry International, 2018, 119, 17-25.	1.9	15
61	General transcriptional repression by polyglutamine disease proteins is not directly linked to the presence of inclusion bodies. Biochemical and Biophysical Research Communications, 2004, 313, 110-116.	1.0	14
62	Bergmann glia are reduced in spinocerebellar ataxia type 1. NeuroReport, 2013, 24, 620-625.	0.6	14
63	HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer's disease pathology. Communications Biology, 2021, 4, 1175.	2.0	14
64	Polyglutamine tract-binding protein-1 dysfunction induces cell death of neurons through mitochondrial stress. Journal of Neurochemistry, 2005, 95, 858-870.	2.1	13
65	The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing. Cell Death and Disease, 2016, 7, e2207-e2207.	2.7	12
66	Developmental YAPdeltaC determines adult pathology in a model of spinocerebellar ataxia type 1. Nature Communications, 2017, 8, 1864.	5.8	12
67	The Relationship between Neurite Density Measured with Confocal Microscopy in a Cleared Mouse Brain and Metrics Obtained from Diffusion Tensor and Diffusion Kurtosis Imaging. Magnetic Resonance in Medical Sciences, 2018, 17, 138-144.	1.1	12
68	PQBP1, an intellectual disability causative gene, affects bone development and growth. Biochemical and Biophysical Research Communications, 2020, 523, 894-899.	1.0	12
69	Neural stem cells express Oct-3/4. Biochemical and Biophysical Research Communications, 2009, 388, 247-251.	1.0	11
70	Quantitative Histological Validation of Diffusion Tensor MRI with Two-Photon Microscopy of Cleared Mouse Brain. Magnetic Resonance in Medical Sciences, 2016, 15, 416-421.	1.1	11
71	Systematic Analysis of Fly Models with Multiple Drivers Reveals Different Effects of Ataxin-1 and Huntingtin in Neuron Subtype-Specific Expression. PLoS ONE, 2014, 9, e116567.	1.1	10
72	Identification of hepta-histidine as a candidate drug for Huntington's disease by in silico-in vitro- in vivo-integrated screens of chemical libraries. Scientific Reports, 2016, 6, 33861.	1.6	9

ΗΙΤΟSΗΙ ΟΚΑΖΑWA

#	Article	IF	CITATIONS
73	Ultra-Early Phase pathologies of Alzheimer's disease and other neurodegenerative diseases. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 361-377.	1.6	9
74	Mild Maternal Hypothyroxinemia During Pregnancy Induces Persistent DNA Hypermethylation in the Hippocampal Brain-Derived Neurotrophic Factor Gene in Mouse Offspring. Thyroid, 2018, 28, 395-406.	2.4	9
75	A restricted level of PQBP1 is needed for the best longevity of Drosophila. Neurobiology of Aging, 2013, 34, 356.e11-356.e20.	1.5	7
76	Frameshift PQBP-1 mutants K192Sfs*7 and R153Sfs*41 implicated in X-linked intellectual disability form stable dimers. Journal of Structural Biology, 2019, 206, 305-313.	1.3	7
77	Allosteric modulation of the binding affinity between <scp>PQBP</scp> 1 and the spliceosomal protein U5â€15kD. FEBS Letters, 2016, 590, 2221-2231.	1.3	6
78	Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Reports Medicine, 2022, 3, 100597.	3.3	6
79	DNA damage in embryonic neural stem cell determines FTLDs' fate via early-stage neuronal necrosis. Life Science Alliance, 2021, 4, e202101022.	1.3	5
80	Hepta-Histidine Inhibits Tau Aggregation. ACS Chemical Neuroscience, 2021, 12, 3015-3027.	1.7	5
81	PQBP1: The Key to Intellectual Disability, Neurodegenerative Diseases, and Innate Immunity. International Journal of Molecular Sciences, 2022, 23, 6227.	1.8	5
82	Suppression of the synaptic localization of a subset of proteins including APP partially ameliorates phenotypes of the Drosophila Alzheimer's disease model. PLoS ONE, 2018, 13, e0204048.	1.1	4
83	Glutamine/Asparagine-Rich Regions in Proteins and Polyglutamine Diseases. , 2007, , 451-463.		4
84	Ser46-Phosphorylated MARCKS Is a Marker of Neurite Degeneration at the Pre-aggregation Stage in PD/DLB Pathology. ENeuro, 2018, 5, ENEURO.0217-18.2018.	0.9	4
85	Prediction and verification of the AD-FTLD common pathomechanism based on dynamic molecular network analysis. Communications Biology, 2021, 4, 961.	2.0	2
86	RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhance DNA damage repair. Journal of the Neurological Sciences, 2017, 381, 299.	0.3	1
87	HMGB1 triggers neurite degeneration via TLR4-MARCKS, and is a potential therapeutic target for alzheimer's disease. Journal of the Neurological Sciences, 2017, 381, 64-65.	0.3	1
88	A drosophila PQBP-1 mutant is a novel model for mental retardation. Neuroscience Research, 2007, 58, S118.	1.0	0
89	3P-030 A natively unfolded region of PQBP-1 interacts with U5-15kDa, a component of a splicing factor complex U5(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S132.	0.0	0
90	Null mutation of Drosophila yata/CG1973, which regulates trafficking of Amyloid precursor protein like, results in progressive eye vacuolization, brain volume reduction and lifespan shortening. Neuroscience Research, 2009, 65, S38-S39.	1.0	0

ΗΙΤΟSΗΙ ΟΚΑΖΑWA

#	Article	IF	CITATIONS
91	Molecular mechanisms of PQBP1-linked developmental disorders. Neuroscience Research, 2009, 65, S27.	1.0	о
92	DNA damage repair in Spinocerebellar ataxia 1. Neuroscience Research, 2011, 71, e193.	1.0	0
93	Bridging Multiple Dementias. ACS Chemical Neuroscience, 2018, 9, 636-638.	1.7	0
94	Methods to Image Macroautophagy in the Brain In Vivo. Methods in Molecular Biology, 2019, 1880, 529-534.	0.4	0
95	Mutant huntingtin impairs Ku70-mediated DNA repair. Journal of Experimental Medicine, 2010, 207, i16-i16.	4.2	Ο
96	Role of the <i>Drosophila</i> YATA protein in the proper subcellular localization of COPI revealed by <i>in vivo</i> analysis. Genes and Genetic Systems, 2020, 95, 303-314.	0.2	0
97	Molecular Dissection and Therapeutic Application of SCA1 Pathologies Revealed by Comprehensive Approaches. Contemporary Clinical Neuroscience, 2021, , 479-486.	0.3	О