
Aaron N Hata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328180/publications.pdf Version: 2024-02-01

Δαρών Ν Ηλτά

#	Article	IF	CITATIONS
1	Stitchr: stitching coding TCR nucleotide sequences from V/J/CDR3 information. Nucleic Acids Research, 2022, 50, e68-e68.	14.5	8
2	Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Science Translational Medicine, 2022, 14, eabc7480.	12.4	14
3	Abstract 1300: Targeted therapies prime lung cancer cells for macrophage-mediated destruction. Cancer Research, 2022, 82, 1300-1300.	0.9	0
4	Abstract 2150: LKB1 loss rewires JNK-induced apoptotic protein dynamics through NUAKs and sensitizes KRAS-mutant non-small cell lung cancers to combined KRAS G12C + MCL-1 blockade. Cancer Research, 2022, 82, 2150-2150.	0.9	0
5	Analysis of lorlatinib analogs reveals a roadmap for targeting diverse compound resistance mutations in ALK-positive lung cancer. Nature Cancer, 2022, 3, 710-722.	13.2	28
6	Complete evaluation of resistance mechanisms to first-line osimertinib requires tissue biopsy Journal of Clinical Oncology, 2022, 40, e21154-e21154.	1.6	1
7	MicroRNA-21 guide and passenger strand regulation of adenylosuccinate lyase-mediated purine metabolism promotes transition to an EGFR-TKI-tolerant persister state. Cancer Gene Therapy, 2022, 29, 1878-1894.	4.6	6
8	Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Scientific Reports, 2021, 11, 3656.	3.3	10
9	Spectrum of Mechanisms of Resistance to Crizotinib and Lorlatinib in <i>ROS1</i> Fusion–Positive Lung Cancer. Clinical Cancer Research, 2021, 27, 2899-2909.	7.0	62
10	Clinical Acquired Resistance to KRASG12C Inhibition through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS–MAPK Reactivation. Cancer Discovery, 2021, 11, 1913-1922.	9.4	243
11	A Phase 2 Study of Capmatinib in Patients With MET-Altered Lung Cancer Previously Treated With a MET Inhibitor. Journal of Thoracic Oncology, 2021, 16, 850-859.	1.1	35
12	Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer. Cancers, 2021, 13, 2666.	3.7	79
13	Identification of optimal dosing schedules of dacomitinib and osimertinib for a phase I/II trial in advanced EGFR-mutant non-small cell lung cancer. Nature Communications, 2021, 12, 3697.	12.8	14
14	Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protocols, 2021, 2, 100391.	1.2	2
15	Abstract 982:LKB1loss rewires stress signaling-induced apoptotic protein dynamics and sensitizesKRAS-mutant non-small cell lung cancers to combined MAPK + MCL-1 blockade. , 2021, , .		0
16	Screening and Validation of Molecular Targeted Radiosensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e63-e74.	0.8	10
17	Cycling cancer persister cells arise from lineages with distinct programs. Nature, 2021, 596, 576-582.	27.8	236
18	Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. Science Advances, 2021, 7, .	10.3	49

AARON N HATA

#	Article	IF	CITATIONS
19	Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell, 2021, 39, 1531-1547.e10.	16.8	106
20	Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition. Npj Precision Oncology, 2020, 4, 21.	5.4	36
21	Modeling Resistance and Recurrence Patterns of Combined Targeted–Chemoradiotherapy Predicts Benefit of Shorter Induction Period. Cancer Research, 2020, 80, 5121-5133.	0.9	7
22	Investigating New Mechanisms of Acquired Resistance to Targeted Therapies: If You Hit Them Harder, Do They Get Up Differently?. Cancer Research, 2020, 80, 25-26.	0.9	4
23	Acquired resistance to targeted therapies in NSCLC: Updates and evolving insights. , 2020, 210, 107522.		56
24	Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy. Nature Biotechnology, 2020, 38, 420-425.	17.5	48
25	Can the Help Match the Hype? KRASG12C-Specific Inhibitors and Beyond. Cancer Discovery, 2020, 10, 20-22.	9.4	16
26	Resistance to First-line Osimertinib in EGFR-mutant NSCLC: Tissue is the Issue. Clinical Cancer Research, 2020, 26, 2441-2443.	7.0	8
27	MET Alterations Are a Recurring and Actionable Resistance Mechanism in ALK-Positive Lung Cancer. Clinical Cancer Research, 2020, 26, 2535-2545.	7.0	127
28	Targeting oncogenic drivers in lung cancer: Recent progress, current challenges and future opportunities. , 2019, 193, 20-30.		49
29	The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models. Nature Communications, 2019, 10, 3604.	12.8	99
30	Combination Olaparib and Temozolomide in Relapsed Small-Cell Lung Cancer. Cancer Discovery, 2019, 9, 1372-1387.	9.4	158
31	Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene, 2019, 38, 6399-6413.	5.9	160
32	Sequence, Treat, Repeat: Addressing Resistance in EGFR-Mutant NSCLC. Journal of Thoracic Oncology, 2019, 14, 1875-1877.	1.1	1
33	Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation through S-palmitoylation. Nature, 2019, 573, 139-143.	27.8	45
34	Treatment with Next-Generation ALK Inhibitors Fuels Plasma <i>ALK</i> Mutation Diversity. Clinical Cancer Research, 2019, 25, 6662-6670.	7.0	122
35	Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Reports, 2019, 27, 3422-3432.e4.	6.4	42
36	Patient-Specific Tumor Growth Trajectories Determine Persistent and Resistant Cancer Cell Populations during Treatment with Targeted Therapies. Cancer Research, 2019, 79, 3776-3788.	0.9	32

AARON N HATA

#	Article	IF	CITATIONS
37	Response to the Combination of Osimertinib and Trametinib in a Patient With EGFR-Mutant NSCLC Harboring an Acquired BRAF Fusion. Journal of Thoracic Oncology, 2019, 14, e226-e228.	1.1	24
38	KRAS G12C NSCLC Models Are Sensitive to Direct Targeting of KRAS in Combination with PI3K Inhibition. Clinical Cancer Research, 2019, 25, 796-807.	7.0	175
39	Genomic and Functional Fidelity of Small Cell Lung Cancer Patient-Derived Xenografts. Cancer Discovery, 2018, 8, 600-615.	9.4	157
40	SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nature Medicine, 2018, 24, 512-517.	30.7	155
41	Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound <i>ALK</i> Mutations in ALK-Positive Lung Cancer. Cancer Discovery, 2018, 8, 714-729.	9.4	228
42	Distinct evolutionary paths to TKI resistance in NSCLC. Cell Cycle, 2018, 17, 298-299.	2.6	4
43	Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM. Clinical Cancer Research, 2018, 24, 197-208.	7.0	74
44	Heterogeneity and Coexistence of T790M and T790 Wild-Type Resistant Subclones Drive Mixed Response to Third-Generation Epidermal Growth Factor Receptor Inhibitors in Lung Cancer. JCO Precision Oncology, 2018, 2018, 1-15.	3.0	17
45	Tracking the Evolution of Resistance to ALK Tyrosine Kinase Inhibitors Through Longitudinal Analysis of Circulating Tumor DNA. JCO Precision Oncology, 2018, 2018, 1-14.	3.0	86
46	Impact of <i>EML4-ALK</i> Variant on Resistance Mechanisms and Clinical Outcomes in <i>ALK</i> -Positive Lung Cancer. Journal of Clinical Oncology, 2018, 36, 1199-1206.	1.6	246
47	Landscape of Acquired Resistance to Osimertinib in <i>EGFR</i> -Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired <i>RET</i> Fusion. Cancer Discovery, 2018, 8, 1529-1539.	9.4	342
48	Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in <i>KRAS</i> -Mutant Non–Small Cell Lung Cancer. Cancer Discovery, 2018, 8, 1598-1613.	9.4	71
49	Increased Synthesis of MCL-1 Protein Underlies Initial Survival of <i>EGFR</i> -Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target. Clinical Cancer Research, 2018, 24, 5658-5672.	7.0	38
50	Safety and efficacy of combination olaparib (O) and temozolomide (T) in small cell lung cancer (SCLC) Journal of Clinical Oncology, 2018, 36, 8571-8571.	1.6	4
51	Safety of osimertinib plus chemotherapy in EGFR-mutant NSCLC Journal of Clinical Oncology, 2018, 36, e21231-e21231.	1.6	6
52	Programmed Cell Death Ligand (PD-L1) Expression inÂStage II and III Lung Adenocarcinomas and NodalÂMetastases. Journal of Thoracic Oncology, 2017, 12, 458-466.	1.1	120
53	Clonal Evolution and the Role of Serial Liquid Biopsies in a Case of Small-Cell Lung Cancer–Transformed <i>EGFR</i> Mutant Non–Small-Cell Lung Cancer. JCO Precision Oncology, 2017, 1, 1-7.	3.0	8
54	Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in <i>ROS1</i> -Positive Non–Small-Cell Lung Cancer. JCO Precision Oncology, 2017, 2017, 1-13.	3.0	158

AARON N HATA

#	Article	IF	CITATIONS
55	MET amplification (amp) as a resistance mechanism to osimertinib Journal of Clinical Oncology, 2017, 35, 9020-9020.	1.6	45
56	<i>EGFR</i> Mutations and <i>ALK</i> Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non–Small Cell Lung Cancer: A Retrospective Analysis. Clinical Cancer Research, 2016, 22, 4585-4593.	7.0	977
57	Programmed Cell Death Ligand 1 Expression in Resected Lung Adenocarcinomas: Association with Immune Microenvironment. Journal of Thoracic Oncology, 2016, 11, 1869-1878.	1.1	81
58	Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nature Medicine, 2016, 22, 262-269.	30.7	768
59	Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell, 2016, 29, 159-172.	16.8	104
60	Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1288-96.	7.1	110
61	Heterogeneity Underlies the Emergence of <i>EGFR</i> T790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor. Cancer Discovery, 2015, 5, 713-722.	9.4	429
62	The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discovery, 2015, 5, 475-487.	9.4	501
63	Clinicopathological characteristics of squamous cell carcinoma of the lung with programmed cell death ligand 1 (PD-L1) protein expression Journal of Clinical Oncology, 2015, 33, 7554-7554.	1.6	4
64	Clinicopathological and molecular parameters of lung adenocarcinomas (ADC) associated with programmed cell death ligand 1 (PD-L1) protein expression Journal of Clinical Oncology, 2015, 33, 7555-7555.	1.6	3
65	Clinical correlation and frequency of programmed death ligand-1 (PD-L1) expression in EGFR-mutant and ALK-rearranged non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2015, 33, 8012-8012.	1.6	16
66	Failure to Induce Apoptosis via BCL-2 Family Proteins Underlies Lack of Efficacy of Combined MEK and PI3K Inhibitors for KRAS-Mutant Lung Cancers. Cancer Research, 2014, 74, 3146-3156.	0.9	69