
Giovanna Bianchi ScarrÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study identifies three loci associated with melanoma risk. Nature Genetics, 2009, 41, 920-925.	21.4	422
2	High-risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL. Cancer Research, 2006, 66, 9818-9828.	0.9	373
3	Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 2006, 44, 99-106.	3.2	350
4	Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nature Genetics, 2014, 46, 482-486.	21.4	283
5	Genome-wide association study identifies three new melanoma susceptibility loci. Nature Genetics, 2011, 43, 1108-1113.	21.4	230
6	Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature Genetics, 2015, 47, 987-995.	21.4	218
7	Identification of a <i>SUFU</i> germline mutation in a family with Gorlin syndrome. American Journal of Medical Genetics, Part A, 2009, 149A, 1539-1543.	1.2	163
8	Selection criteria for genetic assessment of patients with familial melanoma. Journal of the American Academy of Dermatology, 2009, 61, 677.e1-677.e14.	1.2	154
9	Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nature Genetics, 2011, 43, 1114-1118.	21.4	140
10	A variant in FTO shows association with melanoma risk not due to BMI. Nature Genetics, 2013, 45, 428-432.	21.4	111
11	Association of MC1R Variants and Host Phenotypes With Melanoma Risk in CDKN2A Mutation Carriers: A GenoMEL Study. Journal of the National Cancer Institute, 2010, 102, 1568-1583.	6.3	108
12	Genetic testing for melanoma. Lancet Oncology, The, 2002, 3, 653-654.	10.7	106
13	Lactoferrin binding sites and nuclear localization in K562(S) cells. Journal of Cellular Physiology, 1992, 153, 477-482.	4.1	98
14	Analysis of Cultured Human Melanocytes Based on Polymorphisms within the SLC45A2/MATP, SLC24A5/NCKX5, and OCA2/P Loci. Journal of Investigative Dermatology, 2009, 129, 392-405.	0.7	96
15	A Single Genetic Origin for the G101W CDKN2A Mutation in 20 Melanoma-Prone Families. American Journal of Human Genetics, 2000, 67, 311-319.	6.2	80
16	Prevalence of the <scp>E</scp> 318 <scp>K MITF</scp> germline mutation in Italian melanoma patients: associations with histological subtypes and family cancer history. Pigment Cell and Melanoma Research, 2013, 26, 259-262.	3.3	80
17	Characterization of ligurian melanoma families and risk of occurrence of other neoplasia. , 1999, 83, 441-448.		78
18	<i>CDKN2A</i> is the main susceptibility gene in Italian pancreatic cancer families. Journal of Medical Genetics, 2012, 49, 164-170.	3.2	64

#	Article	IF	CITATIONS
19	Sporadic multiple primary melanoma cases:CDKN2Agermline mutations with a founder effect. Genes Chromosomes and Cancer, 2001, 32, 195-202.	2.8	63
20	Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients. Human Pathology, 2004, 35, 25-33.	2.0	49
21	CDKN2A mutations and MC1R variants in Italian patients with single or multiple primary melanoma. Pigment Cell and Melanoma Research, 2008, 21, 700-709.	3.3	46
22	INK4/ARF germline alterations in pancreatic cancer patients. Annals of Oncology, 2004, 15, 70-78.	1.2	45
23	Cutaneous phenotype andMC1R variants as modifying factors for the development of melanoma inCDKN2A G101W mutation carriers from 4 countries. International Journal of Cancer, 2007, 121, 825-831.	5.1	45
24	Clinical genetic testing for familial melanoma in Italy: A cooperative study. Journal of the American Academy of Dermatology, 2009, 61, 775-782.	1.2	45
25	Novel MC1R variants in Ligurian melanoma patients and controls. Human Mutation, 2004, 24, 103-103.	2.5	41
26	Impact of E27X, a novel CDKN2A germ line mutation, on p16 and p14ARF expression in Italian melanoma families displaying pancreatic cancer and neuroblastoma. Human Molecular Genetics, 2006, 15, 2682-2689.	2.9	41
27	Coexisting NRAS and BRAF Mutations in Primary Familial Melanomas with Specific CDKN2A Germline Alterations. Journal of Investigative Dermatology, 2010, 130, 618-620.	0.7	37
28	Cytokine expression in human primary and metastatic melanoma cells: analysis in fresh bioptic specimens. Melanoma Research, 1995, 5, 41-47.	1.2	35
29	The yeast CDP1 gene encodes a triple-helical DNA-binding protein. Nucleic Acids Research, 2000, 28, 4090-4096.	14.5	34
30	Germline MLH1 and MSH2 mutations in Italian pancreatic cancer patients with suspected Lynch syndrome. Familial Cancer, 2009, 8, 547-553.	1.9	34
31	Contribution of germline mutations in the BRCA and PALB2 genes to pancreatic cancer in Italy. Familial Cancer, 2012, 11, 41-47.	1.9	32
32	Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions. International Journal of Cancer, 2015, 136, 1351-1360.	5.1	30
33	An Upstream Positive Regulatory Element in Human GM-CSF Promoter Is Recognized by NF-κB/Rel Family Members. Biochemical and Biophysical Research Communications, 1996, 223, 64-72.	2.1	27
34	Early onset may predict G101W CDKN2A founder mutation carrier status in Ligurian melanoma patients. Melanoma Research, 2004, 14, 443-448.	1.2	26
35	Predicting the Risk of Pancreatic Cancer: On CDKN2A Mutations in the Melanoma-Pancreatic Cancer Syndrome in Italy. Journal of Clinical Oncology, 2007, 25, 5336-5337.	1.6	26
36	A comparison of CDKN2A mutation detection within the Melanoma Genetics Consortium (GenoMEL). European Journal of Cancer, 2008, 44, 1269-1274.	2.8	26

#	Article	IF	CITATIONS
37	Brooke‣piegler syndrome: report of two cases not associated with a mutation in the <i>CYLD</i> and <i>PTCH</i> tumorâ€suppressor genes. Journal of Cutaneous Pathology, 2012, 39, 366-371.	1.3	25
38	The role of AIRE polymorphisms in melanoma. Clinical Immunology, 2010, 136, 96-104.	3.2	23
39	Unusual Ph translocations in CML: Four new cases. Cancer Genetics and Cytogenetics, 1985, 15, 199-207.	1.0	22
40	Masked Philadelphia chromosome caused by translocation (9;11;22). Cancer Genetics and Cytogenetics, 1983, 8, 319-323.	1.0	20
41	CDKN2A and MC1R analysis in amelanotic and pigmented melanoma. Melanoma Research, 2009, 19, 142-145.	1.2	20
42	Novel PTCH1 Mutations in Patients with Keratocystic Odontogenic Tumors Screened for Nevoid Basal Cell Carcinoma (NBCC) Syndrome. PLoS ONE, 2012, 7, e43827.	2.5	20
43	Increased Risk of Colorectal Adenomas in Italian Subjects Carrying the <i>p53</i> PIN3 A2-Pro72 Haplotype. Digestion, 2006, 74, 228-235.	2.3	19
44	Ameloblastoma: a neglected criterion for nevoid basal cell carcinoma (Gorlin) syndrome. Familial Cancer, 2012, 11, 411-418.	1.9	19
45	Molecular characterization of an Italian series of sporadic GISTs. Gastric Cancer, 2013, 16, 596-601.	5.3	19
46	Pathway-Based Analysis of a Melanoma Genome-Wide Association Study: Analysis of Genes Related to Tumour-Immunosuppression. PLoS ONE, 2011, 6, e29451.	2.5	18
47	Hereditary trichilemmal cysts: a proposal for the assessment of diagnostic clinical criteria. Clinical Genetics, 2013, 84, 65-69.	2.0	18
48	Somatic BRAF and NRAS Mutations in Familial Melanomas with Known Germline CDKN2A Status: A GenoMEL Study. Journal of Investigative Dermatology, 2014, 134, 287-290.	0.7	18
49	On the Interplay of Telomeres, Nevi and the Risk of Melanoma. PLoS ONE, 2012, 7, e52466.	2.5	18
50	<i>MDM2</i> SNP309 genotype influences survival of metastatic but not of localized neuroblastoma. Pediatric Blood and Cancer, 2009, 53, 576-583.	1.5	17
51	The 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget, 2015, 6, 39980-39994.	1.8	17
52	Five novel germline functionâ€impairing mutations of <i>CYLD</i> in Italian patients with multiple cylindromas. Clinical Genetics, 2009, 76, 481-485.	2.0	15
53	Karyotype evolution in a case of chronic myelogenous leukemia with an unusual Philadelphia chromosome translocation, t(4;22), and an additional translocation, t(3;5). Cancer Genetics and Cytogenetics, 1981, 3, 47-53.	1.0	13
54	Inverse correlation between p16INK4A expression and NF-κB activation in melanoma progression. Human Pathology, 2004, 35, 1029-1037.	2.0	13

#	Article	IF	CITATIONS
55	Clinical utility gene card for: Gorlin Syndrome - update 2013. European Journal of Human Genetics, 2013, 21, 1187-1187.	2.8	13
56	A Flexible Multiplex Bead-Based Assay for Detecting Germline CDKN2A and CDK4 Variants in Melanoma-Prone Kindreds. Journal of Investigative Dermatology, 2011, 131, 480-486.	0.7	11
57	Duplication of CXC chemokine genes on chromosome 4q13 in a melanomaâ€prone family. Pigment Cell and Melanoma Research, 2012, 25, 243-247.	3.3	11
58	c-Rel and p65 subunits bind to an upstream NF-κB site in human granulocyte macrophage-colony stimulating factor promoter involved in phorbol ester response in 5637 cells. FEBS Letters, 1997, 418, 215-218.	2.8	10
59	Unicystic ameloblastoma associated with the novel K729M PTCH1 mutation in a patient with nevoid basal cell carcinoma (Gorlin) syndrome. Cancer Genetics, 2012, 205, 177-181.	0.4	10
60	Genomic rearrangements of the CDKN2A locus are infrequent in Italian malignant melanoma families without evidence of CDKN2A/CDK4 point mutations. Melanoma Research, 2008, 18, 431-437.	1.2	9
61	A case of chronic myelogenous leukemia with unusual chromosomal abnormality. Leukemia Research, 1979, 3, 271-275.	0.8	8
62	Marked karyotype abnormalities in two cases of acute myelogenous leukemia. Cancer Genetics and Cytogenetics, 1981, 4, 303-309.	1.0	8
63	Effect of endothelial cell conditioned medium on the growth of human bone marrow fibroblasts. Journal of Cellular Physiology, 1985, 123, 343-346.	4.1	8
64	Intercellular adhesion molecule-1 (ICAM-1) and granulocyte-macrophage colony stimulating factor (GM-CSF) co-expression in cutaneous malignant melanoma lesions. Melanoma Research, 1999, 9, 253-260.	1.2	8
65	Nevoid Basal Cell Carcinoma Syndrome in infants: improving diagnosis. Child: Care, Health and Development, 2005, 31, 351-354.	1.7	8
66	Patched homolog 1 gene mutation (p.G1093R) induces nevoid basal cell carcinoma syndrome and non-syndromic keratocystic odontogenic tumors: A case report. Oncology Letters, 2012, 4, 241-244.	1.8	8
67	MEL-P, a GM-CSF-producing human melanoma cell line. Melanoma Research, 1996, 6, 203-213.	1.2	6
68	Clinical utility gene card for: Gorlin syndrome. European Journal of Human Genetics, 2011, 19, 3-3.	2.8	6
69	Expression and Genomic Configuration of GM-CSF, IL-3, M-CSF Receptor (C-FMS), Early Growth Response Gene-1 (EGR-1) and M-CSF Genes in Primary Myelodysplastic Syndromes. Leukemia and Lymphoma, 1994, 15, 135-141.	1.3	5
70	Characterization of a Distal 5′-Flanking Region (â^'2010/â^'630) of Human GM-CSF. Biochemical and Biophysical Research Communications, 1995, 214, 1015-1022.	2.1	5
71	An upstream negative regulatory element in human granulocyte-macrophage colony-stimulating factor promoter is recognised by AP1 family members. FEBS Letters, 1998, 440, 119-124.	2.8	5
72	Characterization, localization, and biosynthesis of acetylcholinesterase in K 562 cells. Archives of Biochemistry and Biophysics, 1988, 267, 245-251.	3.0	4

#	Article	IF	CITATIONS
73	H and L Ferritin Gene Expression in U937 Cells Induced to Macrophage Differentiation. Leukemia and Lymphoma, 1993, 12, 109-115.	1.3	4
74	No Evidence for Linkage with Melanoma in Italian Melanoma-Prone Families. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 1838-1840.	2.5	2
75	Electrophoretic pattern of NADPH-dependent oxidoreductive activities in K 562 and HL 60 leukemic cell lines. Cell Differentiation, 1988, 22, 155-158.	0.4	1
76	Characterization of a triplex DNA-binding protein encoded by an alternative reading frame of loricrin. FEBS Journal, 2001, 268, 225-234.	0.2	0