List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5328022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Memristive Rulkov Neuron Model With Magnetic Induction Effects. IEEE Transactions on Industrial Informatics, 2022, 18, 1726-1736.	7.2	116
2	Modeling of memristor-based Hindmarsh-Rose neuron and its dynamical analyses using energy method. Applied Mathematical Modelling, 2022, 101, 503-516.	2.2	55
3	Control the stability in chaotic circuit coupled by memristor in different branch circuits. AEU - International Journal of Electronics and Communications, 2022, 145, 154074.	1.7	11
4	The influence of autapse on synchronous firing in small-world neural networks. Physica A: Statistical Mechanics and Its Applications, 2022, 594, 126956.	1.2	12
5	A differentially private matrix factorization based on vector perturbation for recommender system. Neurocomputing, 2022, 483, 32-41.	3.5	7
6	Pinning bipartite synchronization for coupled nonlinear systems with antagonistic interactions and time delay. Physica A: Statistical Mechanics and Its Applications, 2022, 593, 126954.	1.2	1
7	A differentially private nonnegative matrix factorization for recommender system. Information Sciences, 2022, 592, 21-35.	4.0	22
8	Advances in Nonlinear Dynamics. , 2022, , .		1
9	How to wake up the electric synapse coupling between neurons?. Nonlinear Dynamics, 2022, 108, 1681-1695.	2.7	48
10	Pattern formation in a thermosensitive neural network. Communications in Nonlinear Science and Numerical Simulation, 2022, 111, 106426.	1.7	21
11	The shock wave solutions of modified ZK Burgers equation in inhomogeneous dusty plasmas. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 249-257.	0.7	0
12	Phase synchronization and energy balance between neurons. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 1407-1420.	1.5	59
13	Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dynamics, 2022, 109, 2063-2084.	2.7	48
14	Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cognitive Neurodynamics, 2021, 15, 265-277.	2.3	49
15	Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing, 2021, 423, 518-534.	3.5	54
16	Mode selection in a neuron driven by Josephson junction current in presence of magnetic field. Chinese Journal of Physics, 2021, 71, 72-84.	2.0	30
17	Regulating synchronous patterns in neurons and networks via field coupling. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105583.	1.7	25
18	Estimate the electrical activity in a neuron under depolarization field. Chaos, Solitons and Fractals, 2021, 142, 110522.	2.5	38

#	Article	IF	CITATIONS
19	Synchronization between FitzHugh-Nagumo neurons coupled with phototube. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 090502-090502.	0.2	10
20	Enhanced logical chaotic resonance. Chaos, 2021, 31, 023103.	1.0	24
21	Memristive neuron model with an adapting synapse and its hardware experiments. Science China Technological Sciences, 2021, 64, 1107-1117.	2.0	55
22	Resonance synchronisation between memristive oscillators and network without variable coupling. Pramana - Journal of Physics, 2021, 95, 1.	0.9	13
23	Control of firing activities in thermosensitive neuron by activating excitatory autapse*. Chinese Physics B, 2021, 30, 100501.	0.7	21
24	Estimation of biophysical properties of cell exposed to electric field. Chinese Physics B, 2021, 30, 038702.	0.7	5
25	A Novel Compressive Image Encryption with an Improved 2D Coupled Map Lattice Model. Security and Communication Networks, 2021, 2021, 1-21.	1.0	6
26	A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos, Solitons and Fractals, 2021, 145, 110751.	2.5	82
27	Aligned Ti ₃ C ₂ T <i>_x</i> Electrodes Induced by Magnetic Field for High-Performance Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 5590-5598.	2.5	7
28	Energy-induced resonance synchronization in neural circuits. Modern Physics Letters B, 2021, 35, 2150433.	1.0	10
29	Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dynamics, 2021, 105, 3603-3614.	2.7	53
30	Enhance sensitivity to illumination and synchronization in light-dependent neurons*. Chinese Physics B, 2021, 30, 120510.	0.7	42
31	Wave filtering and firing modes in a light-sensitive neural circuit. Journal of Zhejiang University: Science A, 2021, 22, 707-720.	1.3	42
32	What is the most suitable Lyapunov function?. Chaos, Solitons and Fractals, 2021, 150, 111154.	2.5	62
33	Synchronization and Pattern Formation in a Memristive Diffusive Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130030.	0.7	10
34	Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos, Solitons and Fractals, 2021, 151, 111203.	2.5	14
35	Chaos-induced Set–Reset latch operation. Chaos, Solitons and Fractals, 2021, 152, 111339.	2.5	14
36	Energy estimation and coupling synchronization between biophysical neurons. Science China Technological Sciences, 2020, 63, 625-636.	2.0	58

#	Article	IF	CITATIONS
37	Memristive autapse involving magnetic coupling and excitatory autapse enhance firing. Neurocomputing, 2020, 379, 296-304.	3.5	23
38	Field coupling synchronization between chaotic circuits via a memristor. AEU - International Journal of Electronics and Communications, 2020, 115, 153050.	1.7	17
39	Autonomic learning via saturation gain method, and synchronization between neurons. Chaos, Solitons and Fractals, 2020, 131, 109533.	2.5	29
40	Mode transition in a memristive dynamical system and its application in image encryption. International Journal of Modern Physics B, 2020, 34, 2050244.	1.0	7
41	A feasible neuron for estimating the magnetic field effect. Nonlinear Dynamics, 2020, 102, 1849-1867.	2.7	67
42	Logical Chaotic Resonance in a Bistable System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050196.	0.7	27
43	Nonlinear dynamics of COVID-19 pandemic: modeling, control, and future perspectives. Nonlinear Dynamics, 2020, 101, 1525-1526.	2.7	15
44	Memristor Initial-Offset Boosting in Memristive HR Neuron Model with Hidden Firing Patterns. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030029.	0.7	59
45	Dynamics and stochastic resonance in a thermosensitive neuron. Applied Mathematics and Computation, 2020, 385, 125427.	1.4	67
46	Control and synchronization in nonlinear circuits by using a thermistor. Modern Physics Letters B, 2020, 34, 2050267.	1.0	40
47	Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent*. Chinese Physics B, 2020, 29, 098704.	0.7	64
48	Synchronization and spatial patterns in a light-dependent neural network. Communications in Nonlinear Science and Numerical Simulation, 2020, 89, 105297.	1.7	29
49	Capturing and shunting energy in chaotic Chua circuit. Chaos, Solitons and Fractals, 2020, 134, 109697.	2.5	15
50	Clarify the physical process for fractional dynamical systems. Nonlinear Dynamics, 2020, 100, 2353-2364.	2.7	48
51	Phase synchronization of memristive systems by using saturation gain method. International Journal of Modern Physics B, 2020, 34, 2050074.	1.0	10
52	A new photosensitive neuron model and its dynamics. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 1387-1396.	1.5	84
53	Phase coupling synchronization of FHN neurons connected by a Josephson junction. Science China Technological Sciences, 2020, 63, 2328-2338.	2.0	87
54	Energy flow-guided synchronization between chaotic circuits. Applied Mathematics and Computation, 2020, 374, 124998.	1.4	30

#	Article	lF	CITATIONS
55	Synchronization and wave propagation in neuronal network under field coupling. Science China Technological Sciences, 2019, 62, 448-457.	2.0	77
56	A neural memristor system with infinite or without equilibrium. European Physical Journal: Special Topics, 2019, 228, 1527-1534.	1.2	5
57	Capacitor coupling induces synchronization between neural circuits. Nonlinear Dynamics, 2019, 97, 2661-2673.	2.7	39
58	Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Science China Technological Sciences, 2019, 62, 2113-2119.	2.0	35
59	Temperature effect on memristive ion channels. Cognitive Neurodynamics, 2019, 13, 601-611.	2.3	46
60	Synchronization between memristive and initial-dependent oscillators driven by noise. Physica A: Statistical Mechanics and Its Applications, 2019, 536, 122598.	1.2	16
61	Minireview on signal exchange between nonlinear circuits and neurons via field coupling. European Physical Journal: Special Topics, 2019, 228, 1907-1924.	1.2	70
62	Electrical Mode Transition of Hybrid Neuronal Model Induced by External Stimulus and Electromagnetic Induction. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950156.	0.7	71
63	A physical view of computational neurodynamics. Journal of Zhejiang University: Science A, 2019, 20, 639-659.	1.3	125
64	Field coupling-induced synchronization via a capacitor and inductor. Chinese Journal of Physics, 2019, 62, 9-25.	2.0	14
65	Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 571-583.	1.5	51
66	Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dynamics, 2019, 96, 205-217.	2.7	80
67	Asymmetric supercapacitors based on high capacitance Ni6MnO8 and graphene. Chinese Chemical Letters, 2019, 30, 1329-1334.	4.8	19
68	Stability of target waves in excitable media under electromagnetic induction and radiation. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 519-530.	1.2	15
69	Synchronization control between two Chua′s circuits via capacitive coupling. Applied Mathematics and Computation, 2019, 360, 94-106.	1.4	43
70	Phase synchronization and lock between memristive circuits under field coupling. AEU - International Journal of Electronics and Communications, 2019, 105, 177-185.	1.7	25
71	The role of coupling factors on the emergence of synchronization and chimera patterns in network of non-locally coupled pancreatic β-cells. Europhysics Letters, 2019, 125, 60001.	0.7	11
72	Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cognitive Neurodynamics, 2019, 13, 393-407.	2.3	68

#	Article	IF	CITATIONS
73	Interaction of Wave Trains with Defects. Communications in Theoretical Physics, 2019, 71, 334.	1.1	2
74	Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 797-806.	1.2	19
75	Model electrical activity of neuron under electric field. Nonlinear Dynamics, 2019, 95, 1585-1598.	2.7	99
76	Synchronization in networks of initially independent dynamical systems. Physica A: Statistical Mechanics and Its Applications, 2019, 520, 370-380.	1.2	17
77	Approximating the energy landscape of a two-dimensional bistable gene autoregulation model by separating slow and fast dynamics. Physical Review E, 2019, 99, 012415.	0.8	1
78	Hyperfine structure and 2s-2p transition in C-like Fe, Co and Ni. Journal of Electron Spectroscopy and Related Phenomena, 2019, 230, 26-32.	0.8	5
79	Noise and delay sustained chimera state in small world neuronal network. Science China Technological Sciences, 2019, 62, 1134-1140.	2.0	37
80	A new neuron model under electromagnetic field. Applied Mathematics and Computation, 2019, 347, 590-599.	1.4	74
81	Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Applied Mathematics and Computation, 2019, 348, 42-56.	1.4	52
82	Adaptive Finite-Time Stabilization of Chaotic Flow with a Single Unstable Node Using a Nonlinear Function-Based Global Sliding Mode. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2019, 43, 339-347.	1.5	17
83	Field coupling benefits signal exchange between Colpitts systems. Applied Mathematics and Computation, 2019, 342, 45-54.	1.4	18
84	Suppression of chaos via control of energy flow. Pramana - Journal of Physics, 2018, 90, 1.	0.9	16
85	Collective responses in electrical activities of neurons under field coupling. Scientific Reports, 2018, 8, 1349.	1.6	101
86	Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cognitive Neurodynamics, 2018, 12, 343-349.	2.3	74
87	Crack synchronization of chaotic circuits under field coupling. Nonlinear Dynamics, 2018, 93, 2057-2069.	2.7	32
88	Synchronization dependence on initial setting of chaotic systems without equilibria. Chaos, Solitons and Fractals, 2018, 110, 124-132.	2.5	44
89	The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 340-346.	1.2	14
90	A review and guidance for pattern selection in spatiotemporal system. International Journal of Modern Physics B, 2018, 32, 1830003.	1.0	84

#	Article	IF	CITATIONS
91	Multi-channels coupling-induced pattern transition in a tri-layer neuronal network. Physica A: Statistical Mechanics and Its Applications, 2018, 493, 54-68.	1.2	13
92	Dynamical behavior and application in Josephson Junction coupled by memristor. Applied Mathematics and Computation, 2018, 321, 290-299.	1.4	50
93	Dynamics of Spiral Waves Induced by Periodic Mechanical Deformation with Phase Difference. Communications in Theoretical Physics, 2018, 70, 749.	1.1	1
94	Synchronization performance in time-delayed random networks induced by diversity in system parameter. Chinese Physics B, 2018, 27, 108902.	0.7	6
95	Signal transmission by autapse with constant or time-periodic coupling intensity in the FitzHugh–Nagumo neuron. European Physical Journal: Special Topics, 2018, 227, 757-766.	1.2	15
96	Control of multi-scroll attractors in a memristor-coupled resonator via time-delayed feedback. Modern Physics Letters B, 2018, 32, 1850399.	1.0	14
97	Synergy and Redundancy in a Signaling Cascade with Different Feedback Mechanisms. Communications in Theoretical Physics, 2018, 70, 485.	1.1	2
98	Field coupling-induced wave propagation and pattern stability in a two-layer neuronal network under noise. International Journal of Modern Physics B, 2018, 32, 1850298.	1.0	20
99	Can Hamilton energy feedback suppress the chameleon chaotic flow?. Nonlinear Dynamics, 2018, 94, 669-677.	2.7	33
100	Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Communications in Nonlinear Science and Numerical Simulation, 2018, 65, 79-90.	1.7	43
101	Taking control of initiated propagating wave in a neuronal network using magnetic radiation. Applied Mathematics and Computation, 2018, 338, 141-151.	1.4	33
102	Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. Journal of Zhejiang University: Science A, 2018, 19, 889-903.	1.3	53
103	Robust finite-time composite nonlinear feedback control for synchronization of uncertain chaotic systems with nonlinearity and time-delay. Chaos, Solitons and Fractals, 2018, 114, 46-54.	2.5	115
104	Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PLoS ONE, 2018, 13, e0191120.	1.1	53
105	Modulation of membrane potential and ion concentration of isolate ellipsoidal cell exposed to static electric field. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2018, 48, 783-790.	0.3	2
106	Autaptic regulation of electrical activities in neuron under electromagnetic induction. Scientific Reports, 2017, 7, 43452.	1.6	115
107	Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos, Solitons and Fractals, 2017, 99, 219-225.	2.5	51
108	A review for dynamics in neuron and neuronal network. Nonlinear Dynamics, 2017, 89, 1569-1578.	2.7	332

#	Article	IF	CITATIONS
109	Astrocyte calcium wave induces seizure-like behavior in neuron network. Science China Technological Sciences, 2017, 60, 1011-1018.	2.0	62
110	Bursting behavior in degenerate optical parametric oscillator under noise. Optik, 2017, 139, 231-238.	1.4	7
111	Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos, 2017, 27, 053108.	1.0	64
112	Synchronization behaviors of coupled systems composed of hidden attractors. International Journal of Modern Physics B, 2017, 31, 1750180.	1.0	15
113	Phase synchronization between two neurons induced by coupling of electromagnetic field. Applied Mathematics and Computation, 2017, 307, 321-328.	1.4	164
114	The Electrical Activity of Neurons Subject to Electromagnetic Induction and Gaussian White Noise. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750030.	0.7	133
115	Synchronization between neurons coupled by memristor. Chaos, Solitons and Fractals, 2017, 104, 435-442.	2.5	143
116	Spatiotemporal dynamics in excitable homogeneous random networks composed of periodically self-sustained oscillation. Scientific Reports, 2017, 7, 11885.	1.6	17
117	Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons. Scientific Reports, 2017, 7, 43151.	1.6	46
118	Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos, 2017, 27, 126702.	1.0	11
119	Synchronization stability and pattern selection in a memristive neuronal network. Chaos, 2017, 27, 113108.	1.0	38
120	Modeling of epilepsy based on chaotic artificial neural network. Chaos, Solitons and Fractals, 2017, 105, 150-156.	2.5	55
121	Parametric wave induces straight drift of spiral waves in excitable medium. Europhysics Letters, 2017, 119, 58002.	0.7	7
122	Collective response, synapse coupling and field coupling in neuronal network. Chaos, Solitons and Fractals, 2017, 105, 120-127.	2.5	57
123	Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Physica A: Statistical Mechanics and Its Applications, 2017, 486, 508-516.	1.2	78
124	Using chaotic artificial neural networks to model memory in the brain. Communications in Nonlinear Science and Numerical Simulation, 2017, 44, 449-459.	1.7	66
125	Synchronization behaviors of coupled neurons under electromagnetic radiation. International Journal of Modern Physics B, 2017, 31, 1650251.	1.0	114
126	Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 81-88.	1.2	141

#	Article	IF	CITATIONS
127	A class of initials-dependent dynamical systems. Applied Mathematics and Computation, 2017, 298, 65-76.	1.4	99
128	Dynamical Response of Electrical Activities in Digital Neuron Circuit Driven by Autapse. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750187.	0.7	46
129	Formation of Autapse Connected to Neuron and Its Biological Function. Complexity, 2017, 2017, 1-9.	0.9	47
130	Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte. Complexity, 2017, 2017, 1-13.	0.9	31
131	Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons. PLoS ONE, 2017, 12, e0171273.	1.1	17
132	Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE, 2017, 12, e0174330.	1.1	55
133	Pattern Selection in Network of Coupled Multi-Scroll Attractors. PLoS ONE, 2016, 11, e0154282.	1.1	15
134	Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. Europhysics Letters, 2016, 114, 50006.	0.7	32
135	Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Scientific Reports, 2016, 6, 32343.	1.6	45
136	The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator. Communications in Nonlinear Science and Numerical Simulation, 2016, 39, 99-107.	1.7	16
137	Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 2016, 205, 375-381.	3.5	252
138	Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 2016, 85, 1479-1490.	2.7	388
139	A Chaotic System with Different Shapes of Equilibria. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650069.	0.7	75
140	Transmission of blocked electric pulses in a cable neuron model by using an electric field. Neurocomputing, 2016, 216, 627-637.	3.5	22
141	Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 586-594.	1.2	34
142	Model of electrical activity in cardiac tissue under electromagnetic induction. Scientific Reports, 2016, 6, 28.	1.6	129
143	Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dynamics, 2016, 84, 497-509.	2.7	64
144	Collapse of ordered spatial pattern in neuronal network. Physica A: Statistical Mechanics and Its Applications, 2016, 451, 95-112.	1.2	29

#	Article	IF	CITATIONS
145	Effect of calcium channel noise in astrocytes on neuronal transmission. Communications in Nonlinear Science and Numerical Simulation, 2016, 32, 262-272.	1.7	35
146	Termination of pinned spirals by local stimuli. Europhysics Letters, 2016, 113, 38004.	0.7	25
147	Defects formation and wave emitting from defects in excitable media. Communications in Nonlinear Science and Numerical Simulation, 2016, 34, 55-65.	1.7	17
148	Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 240501.	0.2	27
149	Spectral properties of the temporal evolution of brain network structure. Chaos, 2015, 25, 123112.	1.0	28
150	Formation of multi-armed spiral waves in neuronal network induced by adjusting ion channel conductance. International Journal of Modern Physics B, 2015, 29, 1550043.	1.0	12
151	Energy dependence on the electric activities of a neuron. Chinese Physics B, 2015, 24, 128710.	0.7	65
152	Collapse of Synchronization in a Memristive Network. Communications in Theoretical Physics, 2015, 64, 659-664.	1.1	9
153	A review for dynamics of collective behaviors of network of neurons. Science China Technological Sciences, 2015, 58, 2038-2045.	2.0	215
154	An introduction and guidance for neurodynamics. Science Bulletin, 2015, 60, 1969-1971.	4.3	25
155	Emitting waves from defects in network with autapses. Communications in Nonlinear Science and Numerical Simulation, 2015, 23, 164-174.	1.7	67
156	Pattern selection in neuronal network driven by electric autapses with diversity in time delays. International Journal of Modern Physics B, 2015, 29, 1450239.	1.0	117
157	Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing, 2015, 167, 378-389.	3.5	113
158	Autapse-induced synchronization in a coupled neuronal network. Chaos, Solitons and Fractals, 2015, 80, 31-38.	2.5	84
159	Transition of electric activity of neurons induced by chemical and electric autapses. Science China Technological Sciences, 2015, 58, 1007-1014.	2.0	124
160	Detection of noise effect on coupled neuronal circuits. Communications in Nonlinear Science and Numerical Simulation, 2015, 29, 170-178.	1.7	15
161	Damped oscillations in a multiple delayed feedback NF- \$\$kappa\$\$ κ B signaling module. European Biophysics Journal, 2015, 44, 677-684.	1.2	4
162	Emergence and robustness of target waves in a neuronal network. International Journal of Modern Physics B, 2015, 29, 1550164.	1.0	28

#	Article	IF	CITATIONS
163	Controlling a chaotic resonator by means of dynamic track control. Complexity, 2015, 21, 370-378.	0.9	55
164	Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 058702.	0.2	22
165	Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 198701.	0.2	4
166	Realizing hybrid synchronization of time-delay hyperchaotic 4D systems via partial variables. Applied Mathematics and Computation, 2014, 245, 427-437.	1.4	4
167	Liberation of a pinned spiral wave by a rotating electric pulse. Europhysics Letters, 2014, 107, 38001.	0.7	24
168	Dislocation Coupling-Induced Transition of Synchronization in Two-Layer Neuronal Networks. Communications in Theoretical Physics, 2014, 62, 755-767.	1.1	12
169	Simulating electric activities of neurons by using PSPICE. Nonlinear Dynamics, 2014, 75, 113-126.	2.7	62
170	Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dynamics, 2014, 76, 1951-1962.	2.7	172
171	Autapse-induced target wave, spiral wave in regular network of neurons. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1918-1926.	2.0	79
172	Dynamics of electric activities in neuron and neurons of network induced by autapses. Science China Technological Sciences, 2014, 57, 936-946.	2.0	126
173	Effect of an autapse on the firing pattern transition in a bursting neuron. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3242-3254.	1.7	116
174	Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity, 2014, 20, 64-73.	0.9	77
175	Autapse-Induced Spiral Wave in Network of Neurons under Noise. PLoS ONE, 2014, 9, e100849.	1.1	44
176	Simulating the formation of spiral wave in the neuronal system. Nonlinear Dynamics, 2013, 73, 73-83.	2.7	65
177	Cooperative dynamics in neuronal networks. Chaos, Solitons and Fractals, 2013, 56, 19-27.	2.5	43
178	Emergence of target waves in neuronal networks due to diverse forcing currents. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1126-1138.	2.0	19
179	Detection of ordered wave in the networks of neurons with changeable connection. Science China: Physics, Mechanics and Astronomy, 2013, 56, 952-959.	2.0	19
180	Emitting waves from heterogeneity by a rotating electric field. Chaos, 2013, 23, 033141.	1.0	20

#	Article	IF	CITATIONS
181	Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3350-3364.	1.7	25
182	Spiral waves in systems with fractal heterogeneity. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 5764-5771.	1.2	13
183	Emergence of spiral wave induced by defects block. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 1665-1675.	1.7	25
184	Force exerted on the spiral tip by the heterogeneity in an excitable medium. Europhysics Letters, 2013, 104, 58005.	0.7	18
185	Quantifying the Attractive Force Exerted on the Pinned Calcium Spiral Waves by Using the Adventive Field. Chinese Physics Letters, 2013, 30, 118701.	1.3	3
186	Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block. Communications in Theoretical Physics, 2013, 59, 233-242.	1.1	9
187	Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters. Chinese Physics B, 2013, 22, 100502.	0.7	7
188	TRANSITION OF ORDERED WAVES IN NEURONAL NETWORK INDUCED BY DIFFUSIVE POISONING OF ION CHANNELS. Journal of Biological Systems, 2013, 21, 1350002.	0.5	20
189	SELECTION OF SPIRAL WAVE IN THE COUPLED NETWORK UNDER GAUSSIAN COLORED NOISE. International Journal of Modern Physics B, 2013, 27, 1350115.	1.0	10
190	The Formation Mechanism of Defects, Spiral Wave in the Network of Neurons. PLoS ONE, 2013, 8, e55403.	1.1	32
191	Selection of Multiarmed Spiral Waves in a Regular Network of Neurons. PLoS ONE, 2013, 8, e69251.	1.1	34
192	Information Transmission in a Neuron-Astrocyte Coupled Model. PLoS ONE, 2013, 8, e80324.	1.1	33
193	Effect of inhomogeneous distribution of ion channels on collective electric activities of neurons in a ring network. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 240507.	0.2	7
194	Mechanism of target wave excited by current with diversity. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 058701.	0.2	3
195	Suppression of the spiral wave in cardiac tissue by using forcing currents with diversity. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 084501.	0.2	7
196	Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 170502.	0.2	10
197	The influence of diversity on spiral wave in the cardiac tissue. Europhysics Letters, 2012, 97, 28003.	0.7	17
198	Identification of parameters with different orders of magnitude in chaotic systems. Dynamical Systems, 2012, 27, 253-270.	0.2	18

#	Article	IF	CITATIONS
199	Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4281-4293.	1.7	51
200	Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dynamics, 2012, 69, 2169-2179.	2.7	41
201	Detecting the breakup of spiral waves in small-world networks of neurons due to channel block. Science Bulletin, 2012, 57, 2094-2101.	1.7	26
202	Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 2659-2669.	1.7	20
203	Chaos control, spiral wave formation, and the emergence ofÂspatiotemporal chaos in networked Chua circuits. Nonlinear Dynamics, 2012, 67, 139-146.	2.7	47
204	Adjustment of spiral drift by a travelling wave perturbation. Nonlinear Dynamics, 2012, 67, 159-164.	2.7	7
205	Modulation of nonlinear coupling on the synchronization induced by linear coupling. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 240501.	0.2	5
206	Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons. Applied Mathematics and Computation, 2011, 218, 4467-4474.	1.4	15
207	Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Science Bulletin, 2011, 56, 151-157.	1.7	57
208	Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3770-3785.	1.7	82
209	Delay and diversity-induced synchronization transitions in a small-world neuronal network. Physical Review E, 2011, 83, 046207.	0.8	77
210	TRANSITION OF SPIRAL WAVE IN A MODEL OF TWO-DIMENSIONAL ARRAYS OF HINDMARSH–ROSE NEURONS. International Journal of Modern Physics B, 2011, 25, 1653-1670.	1.0	10
211	PROPAGATION AND SYNCHRONIZATION OF Ca²⁺ SPIRAL WAVES IN EXCITABLE MEDIA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 587-601.	0.7	12
212	Deformation and death of spiral wave induced by asymmetrical diffusion in elastic media. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3913-3918.	1.7	6
213	Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Science China: Physics, Mechanics and Astronomy, 2010, 53, 672-679.	2.0	38
214	A time-varying hyperchaotic system and its realization inÂcircuit. Nonlinear Dynamics, 2010, 62, 535-541.	2.7	22
215	Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Applied Mathematics and Computation, 2010, 215, 3318-3326.	1.4	63
216	Synchronization transition in degenerate optical parametric oscillators induced by nonlinear coupling. Applied Mathematics and Computation, 2010, 216, 647-654.	1.4	7

#	Article	IF	CITATIONS
217	Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Applied Mathematics and Computation, 2010, 217, 3844-3852.	1.4	53
218	Eliminate spiral wave in excitable media by using a new feasible scheme. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1768-1776.	1.7	18
219	Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh–Rose Neurons. Communications in Theoretical Physics, 2010, 53, 382-388.	1.1	28
220	Controlling intracellular Ca 2+ spiral waves by the local agonist in the cell membrane. Chinese Physics B, 2010, 19, 030508.	0.7	6
221	DYNAMICS OF SPIRAL WAVE IN THE COUPLED HODGKIN–HUXLEY NEURONS. International Journal of Modern Physics B, 2010, 24, 4555-4562.	1.0	7
222	Spiral Wave in Small-World Networks of Hodgkin–Huxley Neurons. Communications in Theoretical Physics, 2010, 54, 583-588.	1.1	35
223	PARAMETER FLUCTUATION-INDUCED PATTERN TRANSITION IN THE COMPLEX GINZBURG–LANDAU EQUATION. International Journal of Modern Physics B, 2010, 24, 4481-4500.	1.0	3
224	PHASE SYNCHRONIZATION OF R×SSLER OSCILLATORS WITH PARAMETRIC EXCITATION. International Journal of Modern Physics B, 2010, 24, 3551-3560.	1.0	2
225	COLLECTIVE BEHAVIORS OF SPIRAL WAVES IN THE NETWORKS OF HODGKIN-HUXLEY NEURONS IN PRESENCE OF CHANNEL NOISE. Journal of Biological Systems, 2010, 18, 243-259.	0.5	25
226	Noise effect on persistence of memory in a positive-feedback gene regulatory circuit. Physical Review E, 2009, 80, 011907.	0.8	16
227	Synchronization and parameter identification of one class of realistic chaotic circuit. Chinese Physics B, 2009, 18, 3766-3771.	0.7	6
228	SYNCHRONIZATION OF TIME DELAY FITZHUGH–NAGUMO SMALL-WORLD NETWORKS. International Journal of Modern Physics C, 2009, 20, 1521-1529.	0.8	4
229	CONTROL OF SPIRAL WAVES AND SPATIOTEMPORAL CHAOS WITH PERIODICAL SUBTHRESHOLD ORDERED WAVE PERTURBATIONS. International Journal of Modern Physics C, 2009, 20, 85-96.	0.8	3
230	Density Functional Theory Study on Organic Dye Sensitizers Containing Bis-dimethylfluorenyl Amino Benzofuran. Chinese Journal of Chemical Physics, 2009, 22, 489-496.	0.6	2
231	Theoretical Study on Drift of Ca ²⁺ Spiral Waves Controlled by Electric Field. Communications in Theoretical Physics, 2009, 51, 941-946.	1.1	4
232	Suppression of the Spiral Wave and Turbulence inÂtheÂExcitability-Modulated Media. International Journal of Theoretical Physics, 2009, 48, 150-157.	0.5	14
233	Ca2+ spiral waves in a spatially discrete and random medium. European Biophysics Journal, 2009, 38, 1061-1068.	1.2	12
234	A scheme of de-synchronization in globally coupled neural networks and its possible implications for vagus nerve stimulation. Chaos, Solitons and Fractals, 2009, 39, 1472-1479.	2.5	2

#	Article	IF	CITATIONS
235	Suppression of spiral wave and turbulence by using amplitude restriction of variable in a local square area. Chaos, Solitons and Fractals, 2009, 41, 1331-1339.	2.5	20
236	Three-dimensional dust acoustic solitary waves in nonuniform magnetized dusty plasmas with adiabatic dust charge fluctuation. Physica Scripta, 2009, 80, 035501.	1.2	2
237	The networks scale and coupling parameter in synchronization of neural networks with diluted synapsesa~†. Chaos, Solitons and Fractals, 2008, 36, 1062-1066.	2.5	4
238	Critical features of coupling parameter in synchronization of small world neural networks. Chaos, Solitons and Fractals, 2008, 37, 1083-1089.	2.5	2
239	Control spiral and multi-spiral wave in the complex Ginzburg–Landau equation. Chaos, Solitons and Fractals, 2008, 38, 521-530.	2.5	23
240	Chaotic signal-induced dynamics of degenerate optical parametric oscillator. Chaos, Solitons and Fractals, 2008, 36, 494-499.	2.5	10
241	Simulation study of stimulation parameters in desynchronisation based on the Hodgkin-Huxley small-world neural networks and its possible implications for vagus nerve stimulation. Acta Neuropsychiatrica, 2008, 20, 25-32.	1.0	4
242	Breakup of Spiral Waves in Coupled Hindmarsh–Rose Neurons. Chinese Physics Letters, 2008, 25, 4325-4328.	1.3	28
243	Dynamics of Vortex-Wave under a Travelling-Wave Modulation. Chinese Physics Letters, 2008, 25, 4207-4210.	1.3	0
244	Formation and instability of spiral wave induced by Gaussian coloured noise. Chinese Physics B, 2008, 17, 4047-4055.	0.7	7
245	CONTROLLING TURBULENCE VIA TARGET WAVES GENERATED BY LOCAL PHASE SPACE COMPRESSION. International Journal of Modern Physics B, 2008, 22, 3855-3863.	1.0	4
246	Synchronization of spiral waves in a two-layer coupled inhomogeneous excitable system. Chinese Physics B, 2008, 17, 4107-4113.	0.7	8
247	Numerical study of IP 3 -induced Ca 2+ spiral pattern evolution. Chinese Physics B, 2008, 17, 4100-4106.	0.7	2
248	The instability of the spiral wave induced by the deformation of elastic excitable media. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 385105.	0.7	12
249	Critical condition for the occurrence of a noise-reduction effect. Physical Review E, 2008, 77, 022902.	0.8	6
250	Multiplicative-noise-induced coherence resonance via two different mechanisms in bistable neural models. Physical Review E, 2008, 77, 061905.	0.8	29
251	Numerical study of IP ₃ -dependent Ca ²⁺ spiral waves in Xenopus oocytes. Europhysics Letters, 2008, 83, 68001.	0.7	11
252	Suppression of Spiral Waves by Generating Self-exciting Target Wave. Chinese Journal of Chemical Physics, 2007, 20, 53-58.	0.6	10

#	Article	IF	CITATIONS
253	Suppression of spiral waves using intermittent local electric shock. Chinese Physics B, 2007, 16, 955-961.	1.3	40
254	Processing parameters for Cu nanopowders prepared by anodic arc plasma. Transactions of Nonferrous Metals Society of China, 2007, 17, 128-132.	1.7	3
255	Suppression of spiral waves in light-sensitive media using chaotic signal modulated scheme. Chaos, Solitons and Fractals, 2007, 33, 965-970.	2.5	17
256	Investigation of the lattice expansion for Ni nanoparticles. Materials Characterization, 2007, 58, 1019-1024.	1.9	63
257	Growth mechanism of Cu nanopowders prepared by anodic are plasma. Transactions of Nonferrous Metals Society of China, 2006, 16, 168-172.	1.7	16
258	Evolution of spiral waves subjected to parameter modulation under chaotic signal. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 387-392.	1.2	9
259	Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system. Kybernetika, 0, , 648-663.	0.0	3