
Valentina Zin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5327709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetron Sputtering of Au-Based Alloys on NiTi Elements: Surface Investigation for New Products in SMA-Based Fashion and Luxury Accessories and Watchmaking. Coatings, 2022, 12, 136.	1.2	2
2	Mechanical and Tribological Properties of Ta-N and Ta-Al-N Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering. Materials, 2022, 15, 3354.	1.3	9
3	Surface Optimization of Commercial Porous Ti Substrates by EPD of Titanium Nitride. Membranes, 2022, 12, 531.	1.4	1
4	Effect of temperature and deposition technology on the microstructure, chemistry and tribo-mechanical characteristics of Ti-B based thin films by magnetron sputtering. Surface and Coatings Technology, 2021, 405, 126556.	2.2	7
5	Production Strategies of TiNx Coatings via Reactive High Power Impulse Magnetron Sputtering for Selective H2 Separation. Membranes, 2021, 11, 360.	1.4	2
6	Insights on the Interfacial Processes Involved in the Mechanical and Redox Stability of the BaCe _{0.65} Zr _{0.2} 0Y _{0.15} O _{3â^´l´} –Ce _{0.85} Gd <sul Composite. ACS Applied Energy Materials, 2020, 3, 9877-9888.</sul 	ວ> @.\$ 5<∕sι	ıb 10 ₂
7	Easy preparation method of stable copperâ€based nanoparticle suspensions in lubricant engine oil. Lubrication Science, 2020, 32, 205-217.	0.9	4
8	Al rich PVD protective coatings: A promising approach to prevent T91 steel corrosion in stagnant liquid lead. Surface and Coatings Technology, 2019, 377, 124890.	2.2	40
9	Assessment of synergistic effects of LP-MOCVD TiO2 and Ti surface finish for dental implant purposes. Applied Surface Science, 2019, 490, 568-579.	3.1	10
10	TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants. Surface and Coatings Technology, 2019, 378, 125049.	2.2	16
11	Effect of alumina coatings on corrosion protection of steels in molten lead. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	9
12	The influence of goethite nanorods on structural transitions in liquid crystal 6CHBT. Journal of Magnetism and Magnetic Materials, 2018, 459, 26-32.	1.0	12
13	Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates. Tribology International, 2018, 119, 372-380.	3.0	19
14	Ti1â ^{~,} xAlxN coatings by Reactive High Power Impulse Magnetron Sputtering: film/substrate interface effect on residual stress and high temperature oxidation. Surface and Coatings Technology, 2018, 354, 56-65.	2.2	16
15	Effect of external magnetic field on tribological properties of goethite (a-FeOOH) based nanofluids. Tribology International, 2018, 127, 341-350.	3.0	30
16	Cyclic oxidation in burner rig of TiAlN coating deposited on Ti-48Al-2Cr-2Nb by reactive HiPIMS. Ceramics International, 2017, 43, 5417-5426.	2.3	26
17	Thermal Shock and Oxidation Behavior of HiPIMS TiAlN Coatings Grown on Ti-48Al-2Cr-2Nb Intermetallic Alloy. Materials, 2016, 9, 961.	1.3	11
18	Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Advances, 2016, 6, 59477-59486.	1.7	50

VALENTINA ZIN

#	Article	IF	CITATIONS
19	Structural, morphological and mechanical characterization of Mo sputtered coatings. Surface and Coatings Technology, 2015, 266, 14-21.	2.2	15
20	Nanofluids characterization and application as nanolubricants in heat pump systems. Science and Technology for the Built Environment, 2015, 21, 621-630.	0.8	15
21	Influence of Cu, TiO ₂ Nanoparticles and Carbon Nano-Horns on Tribological Properties of Engine Oil. Journal of Nanoscience and Nanotechnology, 2015, 15, 3590-3598.	0.9	38
22	Characterization of Cu–Ni alloy electrodeposition and synthesis ofÂnanoparticles by pulsed sonoelectrochemistry. Materials Chemistry and Physics, 2014, 144, 272-279.	2.0	22
23	Tribological Properties of Engine Oil with Carbon Nano-horns as Nano-additives. Tribology Letters, 2014, 55, 45-53.	1.2	55
24	The Synthesis and Effect of Copper Nanoparticles on the Tribological Properties of Lubricant Oils. IEEE Nanotechnology Magazine, 2013, 12, 751-759.	1.1	48
25	Temperature dependent properties and aggregation behaviour of FeCo nanoparticles produced sonoelectrochemically. Journal of Nanoparticle Research, 2011, 13, 7253-7262.	0.8	4
26	Iron–chromium alloy nanoparticles produced by pulsed sonoelectrochemistry: Synthesis and characterization. Acta Materialia, 2010, 58, 311-319.	3.8	15
27	Sonoelectrochemical (20kHz) production of platinum nanoparticles from aqueous solutions. Electrochimica Acta, 2009, 54, 7201-7206.	2.6	60
28	Sonoelectrochemical Synthesis of FeCo Nanoparticles: Study of the Effects of Baths Composition on Process Efficiency and Particles Features. Current Nanoscience, 2009, 5, 232-239.	0.7	6
29	Sonoelectrochemical (20ÂkHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. Journal of Applied Electrochemistry, 2008, 38, 395-402.	1.5	27