Valentina Zin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5327709/publications.pdf

Version: 2024-02-01

566801 610482 29 579 15 24 citations h-index g-index papers 29 29 29 719 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Sonoelectrochemical (20kHz) production of platinum nanoparticles from aqueous solutions. Electrochimica Acta, 2009, 54, 7201-7206.	2.6	60
2	Tribological Properties of Engine Oil with Carbon Nano-horns as Nano-additives. Tribology Letters, 2014, 55, 45-53.	1.2	55
3	Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Advances, 2016, 6, 59477-59486.	1.7	50
4	The Synthesis and Effect of Copper Nanoparticles on the Tribological Properties of Lubricant Oils. IEEE Nanotechnology Magazine, 2013, 12, 751-759.	1.1	48
5	Al rich PVD protective coatings: A promising approach to prevent T91 steel corrosion in stagnant liquid lead. Surface and Coatings Technology, 2019, 377, 124890.	2.2	40
6	Influence of Cu, TiO ₂ Nanoparticles and Carbon Nano-Horns on Tribological Properties of Engine Oil. Journal of Nanoscience and Nanotechnology, 2015, 15, 3590-3598.	0.9	38
7	Effect of external magnetic field on tribological properties of goethite (a-FeOOH) based nanofluids. Tribology International, 2018, 127, 341-350.	3.0	30
8	Sonoelectrochemical (20ÂkHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. Journal of Applied Electrochemistry, 2008, 38, 395-402.	1.5	27
9	Cyclic oxidation in burner rig of TiAlN coating deposited on Ti-48Al-2Cr-2Nb by reactive HiPIMS. Ceramics International, 2017, 43, 5417-5426.	2.3	26
10	Characterization of Cu–Ni alloy electrodeposition and synthesis ofÂnanoparticles by pulsed sonoelectrochemistry. Materials Chemistry and Physics, 2014, 144, 272-279.	2.0	22
11	Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates. Tribology International, 2018, 119, 372-380.	3.0	19
12	Tilâ^'xAlxN coatings by Reactive High Power Impulse Magnetron Sputtering: film/substrate interface effect on residual stress and high temperature oxidation. Surface and Coatings Technology, 2018, 354, 56-65.	2.2	16
13	TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants. Surface and Coatings Technology, 2019, 378, 125049.	2.2	16
14	Ironâ€"chromium alloy nanoparticles produced by pulsed sonoelectrochemistry: Synthesis and characterization. Acta Materialia, 2010, 58, 311-319.	3.8	15
15	Structural, morphological and mechanical characterization of Mo sputtered coatings. Surface and Coatings Technology, 2015, 266, 14-21.	2.2	15
16	Nanofluids characterization and application as nanolubricants in heat pump systems. Science and Technology for the Built Environment, 2015, 21, 621-630.	0.8	15
17	The influence of goethite nanorods on structural transitions in liquid crystal 6CHBT. Journal of Magnetism and Magnetic Materials, 2018, 459, 26-32.	1.0	12
18	Thermal Shock and Oxidation Behavior of HiPIMS TiAlN Coatings Grown on Ti-48Al-2Cr-2Nb Intermetallic Alloy. Materials, 2016, 9, 961.	1.3	11

#	Article	IF	CITATIONS
19	Assessment of synergistic effects of LP-MOCVD TiO2 and Ti surface finish for dental implant purposes. Applied Surface Science, 2019, 490, 568-579.	3.1	10
20	Insights on the Interfacial Processes Involved in the Mechanical and Redox Stability of the BaCe _{0.65} Zr _{0.2} 0Y _{0.15} O _{3â^Î} –Ce _{0.85} Gd <sub 2020,="" 3,="" 9877-9888.<="" acs="" applied="" composite.="" energy="" materials,="" td=""><td>)>Q.\$5<td>ıb10₂₈</td></td></sub>)> Q.\$ 5 <td>ıb10₂₈</td>	ıb 10 ₂₈
21	Effect of alumina coatings on corrosion protection of steels in molten lead. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	9
22	Mechanical and Tribological Properties of Ta-N and Ta-Al-N Coatings Deposited by Reactive High Power Impulse Magnetron Sputtering. Materials, 2022, 15, 3354.	1.3	9
23	Effect of temperature and deposition technology on the microstructure, chemistry and tribo-mechanical characteristics of Ti-B based thin films by magnetron sputtering. Surface and Coatings Technology, 2021, 405, 126556.	2.2	7
24	Sonoelectrochemical Synthesis of FeCo Nanoparticles: Study of the Effects of Baths Composition on Process Efficiency and Particles Features. Current Nanoscience, 2009, 5, 232-239.	0.7	6
25	Temperature dependent properties and aggregation behaviour of FeCo nanoparticles produced sonoelectrochemically. Journal of Nanoparticle Research, 2011, 13, 7253-7262.	0.8	4
26	Easy preparation method of stable copperâ€based nanoparticle suspensions in lubricant engine oil. Lubrication Science, 2020, 32, 205-217.	0.9	4
27	Production Strategies of TiNx Coatings via Reactive High Power Impulse Magnetron Sputtering for Selective H2 Separation. Membranes, 2021, 11 , 360 .	1.4	2
28	Magnetron Sputtering of Au-Based Alloys on NiTi Elements: Surface Investigation for New Products in SMA-Based Fashion and Luxury Accessories and Watchmaking. Coatings, 2022, 12, 136.	1.2	2
29	Surface Optimization of Commercial Porous Ti Substrates by EPD of Titanium Nitride. Membranes, 2022, 12, 531.	1.4	1