Brian Enquist

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5326927/brian-enquist-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

260 178 32,311 79 h-index g-index citations papers 38,490 10.5 7.25 299 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
260	The number of tree species on Earth <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	6
259	Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought <i>New Phytologist</i> , 2022 ,	9.8	1
258	Elevated extinction risk of cacti under climate change Nature Plants, 2022,	11.5	1
257	Remotely sensed assessment of increasing chronic and episodic drought effects on a Costa Rican tropical dry forest. <i>Ecosphere</i> , 2021 , 12, e03824	3.1	1
256	Conservation needs to integrate knowledge across scales. <i>Nature Ecology and Evolution</i> , 2021 ,	12.3	4
255	From a crisis to an opportunity: Eight insights for doing science in the COVID-19 era and beyond. <i>Ecology and Evolution</i> , 2021 , 11, 3588-3596	2.8	2
254	Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. <i>Environmental Research Letters</i> , 2021 , 16, 055006	6.2	10
253	Human food use increases plant geographical ranges in the Sonoran Desert. <i>Global Ecology and Biogeography</i> , 2021 , 30, 1461-1473	6.1	0
252	sPlotOpen [An environmentally balanced, open-access, global dataset of vegetation plots. <i>Global Ecology and Biogeography</i> , 2021 , 30, 1740-1764	6.1	6
251	Soil-associated drivers of plant traits and functional composition in Atlantic Forest coastal tree communities. <i>Ecosphere</i> , 2021 , 12, e03629	3.1	1
250	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. <i>Remote Sensing of Environment</i> , 2021 , 252, 112122	13.2	15
249	Next-generation field courses: Integrating Open Science and online learning. <i>Ecology and Evolution</i> , 2021 , 11, 3577-3587	2.8	2
248	Branching principles of animal and plant networks identified by combining extensive data, machine learning and modelling. <i>Journal of the Royal Society Interface</i> , 2021 , 18, 20200624	4.1	1
247	Consistent trait-environment relationships within and across tundra plant communities. <i>Nature Ecology and Evolution</i> , 2021 , 5, 458-467	12.3	4
246	A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species. <i>Frontiers in Ecology and Evolution</i> , 2021 , 9,	3.7	5
245	Areas of global importance for conserving terrestrial biodiversity, carbon and water. <i>Nature Ecology and Evolution</i> , 2021 , 5, 1499-1509	12.3	24
244	How deregulation, drought and increasing fire impact Amazonian biodiversity. <i>Nature</i> , 2021 , 597, 516-5	5 25 10.4	10

(2019-2021)

243	The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3	
242	The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape. <i>Frontiers in Forests and Global Change</i> , 2020 , 3,	3.7	3	
241	Darwin's naturalization conundrum can be explained by spatial scale. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10904-10910	11.5	18	
240	Plant traits and vegetation data from climate warming experiments along an 1100 m elevation gradient in Gongga Mountains, China. <i>Scientific Data</i> , 2020 , 7, 189	8.2	5	
239	Satellite-derived foresummer drought sensitivity of plant productivity in Rocky Mountain headwater catchments: spatial heterogeneity and geological-geomorphological control. <i>Environmental Research Letters</i> , 2020 , 15, 084018	6.2	12	
238	Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. <i>Global Ecology and Biogeography</i> , 2020 , 29, 992-1007	6.1	13	
237	The Influence of Taxonomy and Environment on Leaf Trait Variation Along Tropical Abiotic Gradients. <i>Frontiers in Forests and Global Change</i> , 2020 , 3,	3.7	6	
236	Doubling demands in programming skills call for ecoinformatics education. <i>Frontiers in Ecology and the Environment</i> , 2020 , 18, 123-124	5.5	4	
235	30% land conservation and climate action reduces tropical extinction risk by more than 50%. <i>Ecography</i> , 2020 , 43, 943-953	6.5	46	
234	Open Science principles for accelerating trait-based science across the Tree of Life. <i>Nature Ecology and Evolution</i> , 2020 , 4, 294-303	12.3	54	
233	Long-term shifts in the functional composition and diversity of a tropical dry forest: a 30-yr study. <i>Ecological Monographs</i> , 2020 , 90, e01408	9	8	
232	Leaf size of woody dicots predicts ecosystem primary productivity. <i>Ecology Letters</i> , 2020 , 23, 1003-1013	310	16	
231	The megabiota are disproportionately important for biosphere functioning. <i>Nature Communications</i> , 2020 , 11, 699	17.4	35	
230	Adding Value to a Field-Based Course with a Science Communication Module on Local Perceptions of Climate Change. <i>Bulletin of the Ecological Society of America</i> , 2020 , 101, e01680	0.7	1	
229	Species' range model metadata standards: RMMS. Global Ecology and Biogeography, 2019 , 28, 1912-192	246.1	8	
228	sPlot 🖪 new tool for global vegetation analyses. <i>Journal of Vegetation Science</i> , 2019 , 30, 161-186	3.1	96	
227	Drivers of C cycling in three arctic-alpine plant communities. <i>Arctic, Antarctic, and Alpine Research</i> , 2019 , 51, 128-147	1.8	3	•
226	Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic diversity. <i>Ecology Letters</i> , 2019 , 22, 1126-1135	10	26	

225	Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. <i>Journal of Plant Ecology</i> , 2019 , 12, 791-803	1.7	4
224	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. <i>Nature</i> , 2019 , 569, 404-408	50.4	203
223	Thermal disruption of soil bacterial assemblages decreases diversity and assemblage similarity. <i>Ecosphere</i> , 2019 , 10, e02598	3.1	1
222	Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees. <i>Science of the Total Environment</i> , 2019 , 666, 1301-1315	10.2	12
221	Drier tropical forests are susceptible to functional changes in response to a long-term drought. <i>Ecology Letters</i> , 2019 , 22, 855-865	10	39
220	The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. <i>Journal of Ecology</i> , 2019 , 107, 2278-2290	6	11
219	Drought and the interannual variability of stem growth in an aseasonal, everwet forest. <i>Biotropica</i> , 2019 , 51, 139-154	2.3	4
218	The plant diversity sampling design for The National Ecological Observatory Network. <i>Ecosphere</i> , 2019 , 10, e02603	3.1	7
217	Continental scale structuring of forest and soil diversity via functional traits. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1298-1308	12.3	17
216	On the relationships between size and abundance in plants: beyond forest communities. <i>Ecosphere</i> , 2019 , 10, e02856	3.1	4
215	Covariance of Sun and Shade Leaf Traits Along a Tropical Forest Elevation Gradient. <i>Frontiers in Plant Science</i> , 2019 , 10, 1810	6.2	10
214	. IEEE Access, 2019 , 7, 182796-182813	3.5	9
213	The commonness of rarity: Global and future distribution of rarity across land plants. <i>Science Advances</i> , 2019 , 5, eaaz0414	14.3	94
212	Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. <i>Science Advances</i> , 2019 , 5, eaaw8114	14.3	29
211	Climate shapes and shifts functional biodiversity in forests worldwide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 587-592	11.5	58
210	A roadmap for global synthesis of the plant tree of life. <i>American Journal of Botany</i> , 2018 , 105, 614-622	2.7	29
209	Structural and defensive roles of angiosperm leaf venation network reticulation across an AndesAmazon elevation gradient. <i>Journal of Ecology</i> , 2018 , 106, 1683-1699	6	8
208	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. <i>Journal of Biogeography</i> , 2018 , 45, 895-916	4.1	57

207	Adaptive diversification of growth allometry in the plant. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3416-3421	11.5	40
206	Toward a theory for diversity gradients: the abundance-adaptation hypothesis. <i>Ecography</i> , 2018 , 41, 25	55 25 4	26
205	Draining the Pool? Carbon Storage and Fluxes in Three Alpine Plant Communities. <i>Ecosystems</i> , 2018 , 21, 316-330	3.9	26
204	Fire effects and ecological recovery pathways of tropical montane cloud forests along a time chronosequence. <i>Global Change Biology</i> , 2018 , 24, 758-772	11.4	9
203	The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 373-379	7.7	131
202	Late Quaternary climate legacies in contemporary plant functional composition. <i>Global Change Biology</i> , 2018 , 24, 4827-4840	11.4	29
201	Isoprene emission structures tropical tree biogeography and community assembly responses to climate. <i>New Phytologist</i> , 2018 , 220, 435-446	9.8	17
200	When tree rings go global: Challenges and opportunities for retro- and prospective insight. <i>Quaternary Science Reviews</i> , 2018 , 197, 1-20	3.9	81
199	Drivers of terrestrial plant production across broad geographical gradients. <i>Global Ecology and Biogeography</i> , 2018 , 27, 166-174	6.1	42
198	Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras. Journal of Biogeography, 2018 , 45, 418-428	4.1	16
197	New approaches for delineating n-dimensional hypervolumes. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 305-319	7.7	102
196	Tropical forest leaves may darken in response to climate change. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1918-1924	12.3	16
195	Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. <i>Frontiers in Plant Science</i> , 2018 , 9, 1548	6.2	60
194	Plant Functional Diversity and the Biogeography of Biomes in North and South America. <i>Frontiers in Ecology and Evolution</i> , 2018 , 6,	3.7	22
193	Plant functional trait change across a warming tundra biome. <i>Nature</i> , 2018 , 562, 57-62	50.4	264
192	Similarities and differences in intrapopulation trait correlations of co-occurring tree species: consistent water-use relationships amid widely different correlation patterns. <i>American Journal of Botany</i> , 2018 , 105, 1477-1490	2.7	15
191	Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities. <i>BMC Ecology</i> , 2018 , 18, 29	2.7	5
190	Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytologist, 2017, 214, 1049-1063	9.8	101

189	Predictability in community dynamics. <i>Ecology Letters</i> , 2017 , 20, 293-306	10	47
188	Predicting trait-environment relationships for venation networks along an Andes-Amazon elevation gradient. <i>Ecology</i> , 2017 , 98, 1239-1255	4.6	20
187	Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. <i>Journal of Ecology</i> , 2017 , 105, 1775-1790	6	73
186	Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. <i>Ecology</i> , 2017 , 98, 2019-2028	4.6	34
185	Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. <i>Ecology Letters</i> , 2017 , 20, 730-740	10	62
184	Does environmental heterogeneity drive functional trait variation? A test in montane and alpine meadows. <i>Oikos</i> , 2017 , 126, 1650-1659	4	46
183	Correspondence: Reply to 'Analytical flaws in a continental-scale forest soil microbial diversity study'. <i>Nature Communications</i> , 2017 , 8, 15583	17.4	4
182	Less favourable climates constrain demographic strategies in plants. <i>Ecology Letters</i> , 2017 , 20, 969-980	10	53
181	The evolution of bacterial cell size: the internal diffusion-constraint hypothesis. <i>ISME Journal</i> , 2017 , 11, 1559-1568	11.9	16
180	The role of functional uniqueness and spatial aggregation in explaining rarity in trees. <i>Global Ecology and Biogeography</i> , 2017 , 26, 777-786	6.1	24
179	Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 2952-2965	3.7	10
178	Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. <i>Global Ecology and Biogeography</i> , 2017 , 26, 1357-1373	6.1	29
177	A general model for metabolic scaling in self-similar asymmetric networks. <i>PLoS Computational Biology</i> , 2017 , 13, e1005394	5	19
176	Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. <i>Global Ecology and Biogeography</i> , 2017 , 26, 1165-1176	6.1	26
175	Using n-dimensional hypervolumes for species distribution modelling: A response to Qiao et al. (). <i>Global Ecology and Biogeography</i> , 2017 , 26, 1071-1075	6.1	12
174	Biodiversity and climate determine the functioning of Neotropical forests. <i>Global Ecology and Biogeography</i> , 2017 , 26, 1423-1434	6.1	110
173	Towards a thesaurus of plant characteristics: an ecological contribution. <i>Journal of Ecology</i> , 2017 , 105, 298-309	6	75
172	Scale dependence of canopy trait distributions along a tropical forest elevation gradient. <i>New Phytologist</i> , 2017 , 214, 973-988	9.8	40

(2016-2017)

171	Variation in leaf wettability traits along a tropical montane elevation gradient. <i>New Phytologist</i> , 2017 , 214, 989-1001	9.8	35	
170	Trait variation and integration across scales: is the leaf economic spectrum present at local scales?. <i>Ecography</i> , 2017 , 40, 685-697	6.5	110	
169	Big data of tree species distributions: how big and how good?. Forest Ecosystems, 2017, 4,	3.8	39	
168	A plant growth form dataset for the New World. <i>Ecology</i> , 2016 , 97, 3243	4.6	26	
167	Temperature mediates continental-scale diversity of microbes in forest soils. <i>Nature Communications</i> , 2016 , 7, 12083	17.4	271	
166	Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. <i>Ecology and Evolution</i> , 2016 , 6, 5674-89	2.8	18	
165	Production of leaf wax n-alkanes across a tropical forest elevation transect. <i>Organic Geochemistry</i> , 2016 , 100, 89-100	3.1	49	
164	Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. <i>Ecology Letters</i> , 2016 , 19, 1119-28	10	109	
163	Temperature response of soil respiration largely unaltered with experimental warming. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13797-13802	11.5	206	
162	The energetic and carbon economic origins of leaf thermoregulation. <i>Nature Plants</i> , 2016 , 2, 16129	11.5	97	
161	A network approach for inferring species associations from co-occurrence data. <i>Ecography</i> , 2016 , 39, 1139-1150	6.5	66	
160	Biogeographic patterns of soil diazotrophic communities across six forests in North America. <i>Molecular Ecology</i> , 2016 , 25, 2937-48	5.7	57	
159	Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 182, 155-172	5.5	68	
158	Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. <i>Botanical Journal of the Linnean Society</i> , 2016 , 180, 141-160	2.2	50	
157	Re-growing a tropical dry forest: functional plant trait composition and community assembly during succession. <i>Functional Ecology</i> , 2016 , 30, 1006-1013	5.6	52	
156	Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). <i>Journal of Ecology</i> , 2016 , 104, 219-228	6	31	
155	Plant-O-Matic: a dynamic and mobile guide to all plants of the Americas. <i>Methods in Ecology and Evolution</i> , 2016 , 7, 960-965	7.7	17	
154	Towards Process-based Range Modeling of Many Species. <i>Trends in Ecology and Evolution</i> , 2016 , 31, 860-	- 8 7.1 ₃	78	

153	Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. <i>Ecography</i> , 2016 , 39, 194-203	6.5	64
152	Response to Comments on "Evidence for mesothermy in dinosaurs". <i>Science</i> , 2015 , 348, 982	33.3	3
151	On the Importance of First Principles in Ecological Theory Development. <i>BioScience</i> , 2015 , 65, 342-343	5.7	5
150	Linking environmental filtering and disequilibrium to biogeography with a community climate framework. <i>Ecology</i> , 2015 , 96, 972-85	4.6	50
149	Novel spatial analysis methods reveal scale-dependent spread and infer limiting factors of invasion by Sahara mustard. <i>Ecography</i> , 2015 , 38, 311-320	6.5	6
148	Scaling from Traits to Ecosystems. <i>Advances in Ecological Research</i> , 2015 , 249-318	4.6	183
147	Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography. <i>Ecology Letters</i> , 2015 , 18, 636-45	10	43
146	The Effect of the Foresummer Drought on Carbon Exchange in Subalpine Meadows. <i>Ecosystems</i> , 2015 , 18, 533-545	3.9	26
145	Plant Thermoregulation: Energetics, Trait-Environment Interactions, and Carbon Economics. <i>Trends in Ecology and Evolution</i> , 2015 , 30, 714-724	10.9	93
144	Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. <i>AoB PLANTS</i> , 2015 , 7,	2.9	35
143	Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. <i>Ecography</i> , 2015 , 38, 649-658	6.5	75
142	Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot. <i>Ecology and Evolution</i> , 2015 , 5, 807-20	2.8	67
141	Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 2015, 24, 1314-	1828	245
140	Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. <i>Global Ecology and Biogeography</i> , 2015 , 24, 1465-1475	6.1	46
139	Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. <i>Ecology Letters</i> , 2014 , 17, 811-20	10	54
138	On Theory in Ecology. <i>BioScience</i> , 2014 , 64, 701-710	5.7	131
137	Inferring climate from angiosperm leaf venation networks. New Phytologist, 2014, 204, 116-126	9.8	29
136	Convergence of terrestrial plant production across global climate gradients. <i>Nature</i> , 2014 , 512, 39-43	50.4	195

135	Inclusion of vein traits improves predictive power for the leaf economic spectrum: a response to Sack et al. (2013). <i>Journal of Experimental Botany</i> , 2014 , 65, 5109-14	7	17
134	Dinosaur physiology. Evidence for mesothermy in dinosaurs. <i>Science</i> , 2014 , 344, 1268-72	33.3	104
133	Separating macroecological pattern and process: comparing ecological, economic, and geological systems. <i>PLoS ONE</i> , 2014 , 9, e112850	3.7	7
132	Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?. <i>American Journal of Botany</i> , 2014 , 101, 56-62	2.7	59
131	Plant ecological strategies shift across the Cretaceous-Paleogene boundary. <i>PLoS Biology</i> , 2014 , 12, e ²	10 6:1 94:	9 31
130	Deviation from symmetrically self-similar branching in trees predicts altered hydraulics, mechanics, light interception and metabolic scaling. <i>New Phytologist</i> , 2014 , 201, 217-229	9.8	44
129	Functional trait space and the latitudinal diversity gradient. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13745-50	11.5	220
128	The n-dimensional hypervolume. <i>Global Ecology and Biogeography</i> , 2014 , 23, 595-609	6.1	339
127	The emergence and promise of functional biogeography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13690-6	11.5	391
126	Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. <i>Journal of Vegetation Science</i> , 2013 , 24, 921-931	3.1	103
125	The taxonomic name resolution service: an online tool for automated standardization of plant names. <i>BMC Bioinformatics</i> , 2013 , 14, 16	3.6	277
124	Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. <i>Journal of Ecology</i> , 2013 , 101, 981-989	6	56
123	An empirical assessment of tree branching networks and implications for plant allometric scaling models. <i>Ecology Letters</i> , 2013 , 16, 1069-78	10	69
122	Habitat area and climate stability determine geographical variation in plant species range sizes. <i>Ecology Letters</i> , 2013 , 16, 1446-54	10	93
121	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. <i>New Phytologist</i> , 2013 , 198, 252-263	9.8	94
120	A species-level model for metabolic scaling of trees II. Testing in a ring- and diffuse-porous species. <i>Functional Ecology</i> , 2012 , 26, 1066-1076	5.6	26
119	A species-level model for metabolic scaling in trees I. Exploring boundaries to scaling space within and across species. <i>Functional Ecology</i> , 2012 , 26, 1054-1065	5.6	40
118	Accounting for spatial autocorrelation in null models of tree species association. <i>Ecography</i> , 2012 , 35, 510-518	6.5	17

117	The biogeography and filtering of woody plant functional diversity in North and South America. <i>Global Ecology and Biogeography</i> , 2012 , 21, 798-808	6.1	179
116	A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry. <i>Ecology Letters</i> , 2012 , 15, 1149-57	10	91
115	The leaf-area shrinkage effect can bias paleoclimate and ecology research. <i>American Journal of Botany</i> , 2012 , 99, 1756-63	2.7	40
114	The return of the variance: intraspecific variability in community ecology. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 244-52	10.9	926
113	Viva la variance! A reply to Nakagawa & Schielzeth. <i>Trends in Ecology and Evolution</i> , 2012 , 27, 475-476	10.9	5
112	X-ray imaging of leaf venation networks. <i>New Phytologist</i> , 2012 , 196, 1274-1282	9.8	57
111	Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 1051-60	4.4	37
110	Interannual variability of growth and reproduction in Bursera simaruba: the role of allometry and resource variability. <i>Ecology</i> , 2012 , 93, 180-90	4.6	14
109	Eco-evolutionary community dynamics: covariation between diversity and invasibility across temperature gradients. <i>American Naturalist</i> , 2012 , 180, E110-26	3.7	9
108	SALVIAS [the SALVIAS vegetation inventory database. <i>Biodiversity and Ecology = Biodiversitat Und Okologie</i> , 2012 , 4, 288-288		11
107	The iPlant Collaborative: Cyberinfrastructure for Plant Biology. Frontiers in Plant Science, 2011, 2, 34	6.2	306
106	Venation networks and the origin of the leaf economics spectrum. <i>Ecology Letters</i> , 2011 , 14, 91-100	10	156
105	Variation in above-ground forest biomass across broad climatic gradients. <i>Global Ecology and Biogeography</i> , 2011 , 20, 744-754	6.1	156
104	Global species nergy relationship in forest plots: role of abundance, temperature and species climatic tolerances. <i>Global Ecology and Biogeography</i> , 2011 , 20, 842-856	6.1	51
103	Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. <i>Global Change Biology</i> , 2011 , 17, 1408-1424	11.4	97
102	TRY 🖟 global database of plant traits. <i>Global Change Biology</i> , 2011 , 17, 2905-2935	11.4	1623
101	Response to Coomes & Allen (2009) Testing the metabolic scaling theory of tree growth <i>Journal of Ecology</i> , 2011 , 99, 741-747	6	6
100	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. <i>New Phytologist</i> , 2011 , 191, 777-788	9.8	126

(2008-2011)

99	Metabolic scaling in insects supports the predictions of the WBE model. <i>Journal of Insect Physiology</i> , 2011 , 57, 688-93	2.4	24
98	Forest annual carbon cost: comment. <i>Ecology</i> , 2011 , 92, 1994-8; discussion 1998-2002	4.6	9
97	Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. <i>New Phytologist</i> , 2010 , 186, 593-608	9.8	532
96	Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2272	2 ¹⁷ ·5	145
95	Wanted: A General and Predictive Theory for Trait-based Plant Ecology. <i>BioScience</i> , 2010 , 60, 854-855	5.7	4
94	Extensions and evaluations of a general quantitative theory of forest structure and dynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7046-51	11.5	192
93	A general quantitative theory of forest structure and dynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7040-5	11.5	218
92	Comment on Coomes et al. 'Scaling of xylem vessels and veins within the leaves of oak species'. <i>Biology Letters</i> , 2009 , 5, 380; author reply 381-2	3.6	1
91	Taking species abundance distributions beyond individuals. <i>Ecology Letters</i> , 2009 , 12, 488-501	10	65
90	Advancing the metabolic theory of biodiversity. <i>Ecology Letters</i> , 2009 , 12, 1001-15	10	49
89	Improved abundance prediction from presence bsence data. <i>Global Ecology and Biogeography</i> , 2009 , 18, 1-10	6.1	33
88	Above-ground forest biomass is not consistently related to wood density in tropical forests. <i>Global Ecology and Biogeography</i> , 2009 , 18, 617-625	6.1	39
87	Multiplicative by nature: Why logarithmic transformation is necessary in allometry. <i>Journal of Theoretical Biology</i> , 2009 , 257, 519-521	2.3	198
86	Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology. <i>Ecology</i> , 2009 , 90, 2161-70	4.6	248
85	Controls on Radial Growth of Mountain Big Sagebrush and Implications for Climate Change. Western North American Naturalist, 2009 , 69, 556-562	0.4	15
84	On estimating the exponent of power-law frequency distributions. <i>Ecology</i> , 2008 , 89, 905-12	4.6	267
83	USING NETWORK ANALYSIS TO CHARACTERIZE FOREST STRUCTURE. <i>Natural Resource Modelling</i> , 2008 , 21, 225-247	1.2	10
82	Colloquium paper: microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105 Suppl 1, 11505-11	11.5	584

81	The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. <i>American Journal of Botany</i> , 2008 , 95, 516-9	2.7	87
80	Higher taxa as paleoecological and paleoclimatic indicators: A search for the modern analog of the Florissant fossil flora 2008 ,		7
79	Position within the geographic range, relative local abundance and developmental instability. <i>Ecography</i> , 2008 , 23, 539-546	6.5	
78	Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. <i>American Journal of Botany</i> , 2007 , 94, 451-9	2.7	342
77	The Implications of Scaling Approaches for Understanding Resilience and Reorganization in Ecosystems. <i>BioScience</i> , 2007 , 57, 489-499	5.7	49
76	The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. <i>Ecology</i> , 2007 , 88, 1770-80	4.6	217
75	The allometry of host-pathogen interactions. <i>PLoS ONE</i> , 2007 , 2, e1130	3.7	44
74	Follow Thompson's map to turn biology from a science into a Science. <i>Nature</i> , 2007 , 446, 611	50.4	8
73	Biological scaling: does the exception prove the rule?. <i>Nature</i> , 2007 , 445, E9-10; discussion E10-1	50.4	103
72	A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. <i>Nature</i> , 2007 , 449, 218-22	50.4	184
71	Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. <i>Ecology Letters</i> , 2007 , 10, 995-1015	10	880
70	Latitudinal patterns of range size and species richness of New World woody plants. <i>Global Ecology and Biogeography</i> , 2007 , 16, 679-688	6.1	42
69	Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. <i>Functional Ecology</i> , 2007 , 21, 713-720	5.6	263
68	Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. <i>Global Change Biology</i> , 2007 , 13, 591-609	11.4	62
67	A general model for allometric covariation in botanical form and function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13204-9	11.5	128
66	Metabolic Scaling and the Evolutionary Dynamics of Plant Size, Form, and Diversity: Toward a Synthesis of Ecology, Evolution, and Paleontology. <i>International Journal of Plant Sciences</i> , 2007 , 168, 729-749	2.6	33
65	A NEW CLASS OF MODELS OF SPATIAL DISTRIBUTION. <i>Ecological Monographs</i> , 2007 , 77, 269-284	9	20
64	Comment on 'A critical understanding of the fractal model of metabolic scaling'. <i>Journal of Experimental Biology</i> , 2007 , 210, 3873-4; author reply 3875-6	3	11

(2004-2007)

63	Organ Partitioning and Distribution across the Seed Plants: Assessing the Relative Importance of Phylogeny and Function. <i>International Journal of Plant Sciences</i> , 2007 , 168, 751-761	2.6	20
62	Relationships between body size and abundance in ecology. <i>Trends in Ecology and Evolution</i> , 2007 , 22, 323-30	10.9	527
61	Scaling mass and morphology in leaves: an extension of the WBE model. <i>Ecology</i> , 2007 , 88, 1132-41	4.6	73
60	Comment on "The illusion of invariant quantities in life histories". <i>Science</i> , 2006 , 312, 198; author reply 198	33.3	4
59	The problem and promise of scale dependency in community phylogenetics. <i>Ecology</i> , 2006 , 87, 2418-24	4.6	254
58	Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. <i>American Naturalist</i> , 2006 , 168, E103-22	3.7	312
57	Rebuilding community ecology from functional traits. <i>Trends in Ecology and Evolution</i> , 2006 , 21, 178-85	10.9	2730
56	Response to Kearney and Porter: Both functional and community ecologists need to do more for each other. <i>Trends in Ecology and Evolution</i> , 2006 , 21, 482-483	10.9	7
55	Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. <i>Ecology Letters</i> , 2006 , 9, 419-27	10	82
54	Resilience and resistance of ecosystem functional response to a precipitation pulse in a semi-arid grassland. <i>Journal of Ecology</i> , 2006 , 94, 23-30	6	92
53	Scaling of mass and morphology in plants with minimal branching: an extension of the WBE model. <i>Functional Ecology</i> , 2006 , 20, 11-20	5.6	23
52	Convergence Analysis of Fully Discrete Finite Volume Methods for Maxwell's Equations in Nonhomogeneous Media. <i>SIAM Journal on Numerical Analysis</i> , 2005 , 43, 303-317	2.4	33
51	Allometric growth, life-history invariants and population energetics. <i>Ecology Letters</i> , 2005 , 8, 353-360	10	29
50	Plant allometry, stoichiometry and the temperature-dependence of primary productivity. <i>Global Ecology and Biogeography</i> , 2005 , 14, 585-598	6.1	226
49	Yes, West, Brown and Enquist"s model of allometric scaling is both mathematically correct and biologically relevant. <i>Functional Ecology</i> , 2005 , 19, 735-738	5.6	74
48	The predominance of quarter-power scaling in biology. <i>Functional Ecology</i> , 2004 , 18, 257-282	5.6	480
47	Growth models based on first principles or phenomenology?. Functional Ecology, 2004, 18, 188-196	5.6	47
46	Similarity of mammalian body size across the taxonomic hierarchy and across space and time. <i>American Naturalist</i> , 2004 , 163, 672-91	3.7	148

45	Cope's Rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization. <i>Plant, Cell and Environment</i> , 2003 , 26, 151-161	8.4	41
44	Thermodynamic and metabolic effects on the scaling of production and population energy use. <i>Ecology Letters</i> , 2003 , 6, 990-995	10	193
43	Scaling metabolism from organisms to ecosystems. <i>Nature</i> , 2003 , 423, 639-42	50.4	307
42	Physiology: Why does metabolic rate scale with body size?. <i>Nature</i> , 2003 , 421, 713; discussion 714	50.4	90
41	Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. <i>Ecology Letters</i> , 2002 , 5, 611-613	10	97
40	General patterns of taxonomic and biomass partitioning in extant and fossil plant communities. <i>Nature</i> , 2002 , 419, 610-3	50.4	89
39	Modelling universality and scaling. <i>Nature</i> , 2002 , 420, 626-627	50.4	44
38	Global allocation rules for patterns of biomass partitioning in seed plants. <i>Science</i> , 2002 , 295, 1517-20	33.3	496
37	Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: comparison across tropical forests and tree life history. <i>Journal of Tropical Ecology</i> , 2002 , 18, 151-159	1.3	33
36	Canonical rules for plant organ biomass partitioning and annual allocation. <i>American Journal of Botany</i> , 2002 , 89, 812-9	2.7	110
35	Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. <i>Tree Physiology</i> , 2002 , 22, 1045-64	4.2	274
34	On the vegetative biomass partitioning of seed plant leaves, stems, and roots. <i>American Naturalist</i> , 2002 , 159, 482-97	3.7	153
33	Modeling macroscopic patterns in ecology. <i>Science</i> , 2002 , 295, 1835-7	33.3	27
32	Invariant scaling relations across tree-dominated communities. <i>Nature</i> , 2001 , 410, 655-60	50.4	490
31	A general model for ontogenetic growth. <i>Nature</i> , 2001 , 413, 628-31	50.4	775
30	Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2922-7	11.5	298
29	Plant Communities, Evolution of 2001 , 65-75		
28	Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. <i>Journal of Tropical Ecology</i> , 2001 , 17, 41-60	1.3	85

27	Plant Communities, Evolution of 2001 , 631-644		3
26	Position within the geographic range, relative local abundance and developmental instability. <i>Ecography</i> , 2000 , 23, 539-546	6.5	10
25	The origin of universal scaling laws in biology. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1999 , 263, 104-113	3.3	70
24	Plant energetics and population density. <i>Nature</i> , 1999 , 398, 573-573	50.4	14
23	A general model for the structure and allometry of plant vascular systems. <i>Nature</i> , 1999 , 400, 664-667	50.4	978
22	Allometric scaling of production and life-history variation in vascular plants. <i>Nature</i> , 1999 , 401, 907-911	50.4	492
21	The fourth dimension of life: fractal geometry and allometric scaling of organisms. <i>Science</i> , 1999 , 284, 1677-9	33.3	1180
20	Allometric scaling of plant energetics and population density. <i>Nature</i> , 1998 , 395, 163-165	50.4	694
19	Using Constraint Lines to Characterize Plant Performance. <i>Oikos</i> , 1998 , 83, 237	4	35
18	A general model for the origin of allometric scaling laws in biology. <i>Science</i> , 1997 , 276, 122-6	33.3	3342
17	Connections between ecology, biogeography, and paleobiology: Relationship between local abundance and geographic distribution in fossil and recent molluscs. <i>Evolutionary Ecology</i> , 1995 , 9, 586-	- 60 84	56
16	Implicit processing and therapeutic suggestion during balanced anaesthesia. <i>Acta Anaesthesiologica Scandinavica</i> , 1995 , 39, 333-7	1.9	18
15	Effects of Added Water on Photosynthesis of Bistorta vivipara: The Importance of Water Relations and Leaf Nitrogen in Two Alpine Communities, Pikes Peak, Colorado, U.S.A <i>Arctic and Alpine Research</i> , 1994 , 26, 29		20
14	Species concepts. <i>Nature</i> , 1993 , 364, 20-20	50.4	4
13	The commonness of rarity: Global and future distribution of rarity across land plants		4
12	Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity		5
11	Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity		8
10	Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity		27

9	Adaptive diversification of growth allometry in the plant Arabidopsis thaliana		1
8	Assessing trait driver theory along abiotic gradients in tropical plant communities		2
7	Global shortfalls in extinction risk assessments for endemic flora		4
6	Areas of global importance for terrestrial biodiversity, carbon, and water		11
5	Half of the world tree biodiversity is unprotected and is increasingly threatened by human activities		3
4	A Biogeoscience Approach to Ecosystems9-46		5
3	Land Plants: New Theoretical Directions and Empirical Prospects164-187		17
2	Tropical tree growth driven by dry-season climate variability. Nature Geoscience,	18.3	2
1	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. <i>Global Ecology and Biogeography</i> ,	6.1	0