
Saeed Sheibani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 134-140.	5.6	104
2	Structural investigation on nano-crystalline Cu–Cr supersaturated solid solution prepared by mechanical alloying. Journal of Alloys and Compounds, 2010, 495, 59-62.	5.5	100
3	Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Optical Materials, 2020, 102, 109803.	3.6	90
4	Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying. Journal of Alloys and Compounds, 2018, 735, 1319-1327.	5.5	70
5	Outstanding photocatalytic activity of CoFe2O4 /rGO nanocomposite in degradation of organic dyes. Optical Materials, 2020, 108, 110193.	3.6	67
6	Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Materials Science and Engineering C, 2018, 88, 88-94.	7.3	64
7	Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sciences, 2019, 96, 105975.	3.2	64
8	Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying. Acta Materialia, 2010, 58, 6828-6834.	7.9	52
9	In situ fabrication of Al–TiC Metal Matrix Composites by reactive slag process. Materials & Design, 2007, 28, 2373-2378.	5.1	49
10	Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by sol–gel method. Materials Research Bulletin, 2019, 110, 198-206.	5.2	48
11	Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O. Materials Research Bulletin, 2022, 145, 111561.	5.2	48
12	Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Advanced Powder Technology, 2020, 31, 40-50.	4.1	46
13	Control of structural and magnetic characteristics of cobalt ferrite by post-calcination mechanical milling. Journal of Physics and Chemistry of Solids, 2019, 134, 286-294.	4.0	45
14	Adsorption and photocatalytic characteristics of cobalt ferrite-reduced graphene oxide and cobalt ferrite-carbon nanotube nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112867.	3.9	45
15	CoFe2O4/Fe magnetic nanocomposite: Exchange coupling behavior and microwave absorbing property. Ceramics International, 2020, 46, 17903-17916.	4.8	42
16	Comparative evaluation of copper oxide nano-photocatalyst characteristics by formation of composite with TiO2 and ZnO. Solid State Sciences, 2020, 107, 106362.	3.2	41
17	Photodegradation of dyes in batch and continuous reactors by Cu2O-CuO nano-photocatalyst on Cu foils prepared by chemical-thermal oxidation. Materials Research Bulletin, 2020, 130, 110920.	5.2	41
18	Ternary Ag@SrTiO3@CNT plasmonic nanocomposites for the efficient photodegradation of organic dyes under the visible light irradiation. Ceramics International, 2021, 47, 22741-22752.	4.8	40

#	Article	lF	CITATIONS
19	Design and characterization of nano and bimodal structured biodegradable Fe-Mn-Ag alloy with accelerated corrosion rate. Journal of Alloys and Compounds, 2018, 767, 955-965.	5.5	39
20	Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis. Advanced Powder Technology, 2012, 23, 833-838.	4.1	38
21	Photocatalytic performance of coupled semiconductor ZnO–CuO nanocomposite coating prepared by a facile brass anodization process. Materials Science in Semiconductor Processing, 2021, 135, 106083.	4.0	38
22	Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 244-252.	4.9	37
23	Structural evolution in nano-crystalline Cu synthesized by high energy ball milling. Materials Letters, 2007, 61, 3204-3207.	2.6	36
24	Modification and photocatalytic activity of open channel TiO2 nanotubes array synthesized by anodization process. Applied Surface Science, 2020, 534, 147581.	6.1	34
25	Effect of aqueous inorganic anions on the photocatalytic activity of CuO–Cu2O nanocomposite on MB and MO dyes degradation. Materials Science in Semiconductor Processing, 2022, 139, 106335.	4.0	33
26	Role of process control agent on synthesis and consolidation behavior of nano-crystalline copper produced by mechano-chemical route. Journal of Alloys and Compounds, 2008, 465, 78-82.	5.5	29
27	Effect of intermediate ball milling on the synthesis of Cu-doped TiO2 nano-photocatalyst by sol–gel method. Journal of Sol-Gel Science and Technology, 2019, 92, 173-185.	2.4	28
28	Type-II band alignment in CNT-modified SrTiO3-Fe2TiO5 heterostructure nanocomposite for photocatalytic degradation of organic dyes. Applied Surface Science, 2022, 598, 153816.	6.1	28
29	Spinodal decomposition and precipitation in Cu–Cr nanocomposite. Journal of Alloys and Compounds, 2014, 587, 670-676.	5.5	26
30	The enhanced photocatalytic activity of ZnO nanorods/CuO nanourchins composite prepared by chemical bath precipitation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115262.	3.5	26
31	Surface modification of Cu2O-CuO photocatalyst on Cu wire through decorating with TiO2 nanoparticles for enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2022, 919, 165864.	5.5	25
32	Microstructure and mechanical properties of consolidated Cu-Cr-CNT nanocomposite prepared via powder metallurgy. Journal of Alloys and Compounds, 2018, 732, 818-827.	5.5	24
33	Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometallurgy, 2020, 191, 105230.	4.3	24
34	In situ preparation of Cu–MnO nanocomposite powder through mechanochemical synthesis. Journal of Alloys and Compounds, 2009, 477, 683-687.	5.5	22
35	Preparation, magnetic and photocatalytic properties of nano-structured SrFe12O19 obtained via an optimized mechano-thermal route using celestite ore. Materials Chemistry and Physics, 2022, 275, 125312.	4.0	22
36	In Vitro Degradation, Hemocompatibility, and Cytocompatibility of Nanostructured Absorbable Fe–Mn–Ag Alloys for Biomedical Application. ACS Biomaterials Science and Engineering, 2020, 6, 2094-2106.	5.2	20

#	Article	IF	CITATIONS
37	Kinetics analysis of mechano-chemically and thermally synthesized Cu by Johnson–Mehl–Avrami model. Journal of Alloys and Compounds, 2008, 455, 447-453.	5.5	18
38	Mechano-thermal synthesis and characterization of nano-structured Fe/FeS for application in photocatalysis. Particuology, 2018, 37, 72-80.	3.6	18
39	Magnetic MgFe2O4–CaFe2O4 S-scheme photocatalyst prepared from recycling of electric arc furnace dust. Journal of Environmental Management, 2021, 290, 112609.	7.8	18
40	Insight into the adsorption and photocatalytic properties of in-situ synthesized g-C3N4/SnS2 nanocomposite. Ceramics International, 2022, 48, 30294-30306.	4.8	17
41	Enhanced photocatalytic activity of sputter-deposited nanoporous BiVO4 thin films by controlling film thickness. Journal of Alloys and Compounds, 2021, 879, 160463.	5.5	16
42	Photocatalytic activity enhancement by composition control of mechano-thermally synthesized BiVO4-Cu2O nanocomposite. Ceramics International, 2021, 47, 29795-29806.	4.8	16
43	Effect of milling energy on preparation of nano-structured Fe70Si30 alloys. Powder Technology, 2014, 267, 145-152.	4.2	15
44	Effect of high energy ball milling on the properties of biodegradable nanostructured Fe-35†wt.%Mn alloy. Journal of Alloys and Compounds, 2018, 768, 166-175.	5.5	15
45	Facile mechano-chemical synthesis and enhanced photocatalytic performance of Cu2ZnSnS4 nanopowder. Ceramics International, 2020, 46, 26715-26723.	4.8	15
46	Synthesizing of Nanostructured Fe-Mn Alloys by Mechanical Alloying Process. , 2015, 11, 381-385.		13
47	Effect of milling energy on preparation of Cu–Cr/CNT hybrid nano-composite by mechanical alloying. Transactions of Nonferrous Metals Society of China, 2016, 26, 1359-1366.	4.2	13
48	CNTs-copper oxide nanocomposite photocatalyst with high visible light degradation efficiency. Advanced Powder Technology, 2021, 32, 3760-3769.	4.1	13
49	One-step preparation of Ag-incorporated BiVO4 thin films: plasmon-heterostructure effect in photocatalytic activity enhancement. Applied Surface Science, 2022, 580, 152253.	6.1	13
50	Influence of Al2O3 reinforcement on precipitation kinetic of Cu–Cr nanocomposite. Thermochimica Acta, 2011, 526, 222-228.	2.7	12
51	Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite. Ecotoxicology and Environmental Safety, 2020, 202, 110893.	6.0	12
52	Synthesis and Characterization of CuNi Magnetic Nanoparticles by Mechano-Thermal Route. Journal of Superconductivity and Novel Magnetism, 2014, 27, 481-485.	1.8	11
53	Mechano-chemical processing and characterization of nano-structured FeS powder. Advanced Powder Technology, 2016, 27, 557-563.	4.1	11
54	Comparative study on hot rolling of Cu-Cr and Cu-Cr-CNT nanocomposites. Transactions of Nonferrous Metals Society of China, 2018, 28, 2044-2052.	4.2	11

#	Article	IF	CITATIONS
55	Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 611-620.	4.9	10
56	Characterization and performance of Cu2O nanostructures on Cu wire photocatalyst synthesized in-situ by chemical and thermal oxidation. Journal of Materials Science: Materials in Electronics, 2019, 30, 13675-13689.	2.2	10
57	Comparative study on carbon nanotube and graphene reinforced Cu matrix nanocomposites for thermal management applications. Diamond and Related Materials, 2021, 113, 108273.	3.9	10
58	In-Situ Synthesis of Cu/Cr-Al2O3 Nanocomposite by Mechanical Alloying and Heat Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2606-2612.	2.2	8
59	SYNTHESIS OF NANO-CRYSTALLINE Cu-Cr ALLOY BY MECHANICAL ALLOYING. International Journal of Modern Physics Conference Series, 2012, 05, 496-501.	0.7	8
60	Effect of TiO2 nanoparticle loading by sol–gel method on the gas-phase photocatalytic activity of CuxO–TiO2 nanocomposite. Journal of Sol-Gel Science and Technology, 2020, 96, 464-479.	2.4	8
61	Deposition of nanoporous BiVO4 thin-film photocatalyst by reactive magnetron sputtering: Effect of total pressure and substrate. Transactions of Nonferrous Metals Society of China, 2022, 32, 957-971.	4.2	8
62	High Performance Cu Matrix Nanocomposite Fabricated Through Spark Plasma Sintering of Cu and Cu-Coated CNT. Metals and Materials International, 2021, 27, 4271-4285.	3.4	6
63	Kinetic study on the copper electroless coating on carbon nanotubes. Diamond and Related Materials, 2020, 108, 107987.	3.9	6
64	Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 526-537.	4.9	6
65	Titania-decorated copper oxide nanophotocatalyst powder: A stable and promoted photocatalytic active system. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113401.	3.9	6
66	Chromium (VI) Ions Adsorption Onto Barium Hexaferrite Magnetic Nano-Adsorbent. Advanced Materials Letters, 2016, 7, 579-586.	0.6	4
67	Consolidation of nano-crystalline copper powder by cold and hot pressing. Metals and Materials International, 2011, 17, 749-753.	3.4	3
68	The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposite. AIP Conference Proceedings, 2018, , .	0.4	3
69	Mechano-thermally synthesized CuCrO2/CuCr2O4 nanocomposite and improvement of photocatalytic activity by structure modification. Optical Materials, 2022, 131, 112716.	3.6	3
70	Characterisation of aluminium nanopowder produced by evaporation–condensation method. Materials Science and Technology, 2010, 26, 1207-1212.	1.6	2
71	Effect of Nb and Nb2O5 additives on mechano-thermal processing of TiAl/Al2O3 nano-composite. Journal of Materials Science, 2011, 46, 5512-5518.	3.7	2
72	Dispersion of Carbon Nanotubes in Cu-Cr Matrix Nano-composite by Wet Milling. , 2015, 11, 560-564.		2

#	Article	IF	CITATIONS
73	Effect of calcination temperature on photocatalytic activity of magnetic Fe-based composites recycled from hazardous EAF dust. Materials Research Bulletin, 2022, 148, 111688.	5.2	2
74	Processing of nanocrystalline copper by mechanochemical reduction of CuO and Cu ₂ O with graphite. Materials Science and Technology, 2008, 24, 986-990.	1.6	1
75	Characterization of Cu-nio Nano-composite Powder Prepared by Ball Milling Assisted Solid-state Reaction. , 2015, 11, 119-123.		1
76	Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method. AIP Conference Proceedings, 2018, , .	0.4	1
77	Cu-NiO Nano-composite Formation Through Reactive Milling: Reaction Mechanism. Advanced Materials Letters, 2017, 8, 82-87.	0.6	1
78	FORMATION MECHANISM AND CHARACTERIZATION OF NANOCRYSTALLINE CU SYNTHESIZED BY MECHANO-CHEMICAL METHOD. International Journal of Modern Physics B, 2008, 22, 2962-2969.	2.0	0
79	Investigation on Formation Mechanism of Cu/Cr-Al ₂ O ₃ Nanocomposite. Advanced Materials Research, 2011, 364, 7-11.	0.3	0
80	Characterization of Nanostructured Nickel Aluminate Formation during Mechano-Chemical Recycling of Spent NiO/Al ₂ O ₃ Catalyst. Advanced Materials Research, 2011, 364, 186-190.	0.3	0
81	MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF CONSOLIDATED NANO- AND MICRON- SIZE Cu POWDERS. International Journal of Modern Physics Conference Series, 2012, 05, 18-23.	0.7	0