
Maksim Skorobogatiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuously tunable middle-IR bandpass filters based on gradient metal-hole arrays for multispectral sensing and thermography. Journal of Applied Physics, 2022, 131, .	2.5	2
2	Terahertz solid immersion microscopy: Recent achievements and challenges. Applied Physics Letters, 2022, 120, .	3.3	17
3	Infinity additive manufacturing of continuous microstructured fiber links for THz communications. Scientific Reports, 2022, 12, 4551.	3.3	8
4	Jamming a terahertz wireless link. Nature Communications, 2022, 13, .	12.8	16
5	Photonics based frequency hopping spread spectrum system for secure terahertz communications. Optics Express, 2022, 30, 27028.	3.4	8
6	Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits. Nature Communications, 2022, 13, .	12.8	19
7	Fabrication and characterization of a composite TiO ₂ -polypropylene high-refractive-index solid immersion lens for super-resolution THz imaging. Optical Materials Express, 2022, 12, 3015.	3.0	8
8	Modular 3D-Printed Plasmonic Circuits for Signal Processing in THz Communications. , 2021, , .		0
9	Object-dependent spatial resolution of the reflection-mode terahertz solid immersion microscopy. Optics Express, 2021, 29, 3553.	3.4	20
10	Terahertz Communications Using Rod-in-air Dielectric Subwavelength Fiber. , 2021, , .		0
11	Broadband wide-angle terahertz antenna based on the application of transformation optics to a Luneburg lens. Scientific Reports, 2021, 11, 5230.	3.3	16
12	Special Section Guest Editorial: Advances in Terahertz Biomedical Science and Applications. Journal of Biomedical Optics, 2021, 26, .	2.6	8
13	Opal-based terahertz optical elements fabricated by self-assembly of porous SiO ₂ nanoparticles. Optics Express, 2021, 29, 13764.	3.4	8
14	Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity. Biomedical Optics Express, 2021, 12, 5272.	2.9	23
15	Additive manufacturing of reconfigurable two-wire plasmonic circuits for terahertz communications. , 2021, , .		0
16	Continuous Fabrication of Microstructured Waveguides for THz Communications Using Infinite 3D Printing. , 2021, , .		0
17	Comparison of Wired and Wireless Channel for Short Range Frequency Hopping Terahertz System. , 2021, , .		0
18	Dielectric Fiber-assisted Terahertz Communication Links: Perspectives and Challenges for Onboard		0

and Secure Communications. , 2021, , .

2

#	Article	IF	CITATIONS
19	Wired Channel Modeling for Frequency Hopping System in Secure Terahertz Communications. , 2021, , .		Ο
20	Cellular effects of terahertz waves. Journal of Biomedical Optics, 2021, 26, .	2.6	44
21	Fabrication and Characterization of an 8 × 8 Terahertz Photoconductive Antenna Array for Spatially Resolved Time Domain Spectroscopy and Imaging Applications. IEEE Access, 2021, 9, 117691-117702.	4.2	15
22	Secure Bar Code Reader for the THz Region. , 2021, , .		0
23	Pencil Beams from Leaky-Wave Antenna for Terahertz Communications. , 2021, , .		0
24	Rapid Low-Cost Prototyping of Terahertz Metallic Metasurfaces. , 2021, , .		0
25	Quantitative super-resolution solid immersion microscopy via refractive index profile reconstruction. Optica, 2021, 8, 1471.	9.3	23
26	Ceramic-based metamaterial for THz sensing applications. , 2021, , .		1
27	Highly Directional Antennas for Terahertz Communications. , 2021, , .		0
28	Terahertz Metallic Metasurfaces Prototyping Using Hot Stamping. , 2021, , .		0
29	Additive manufacturing of reconfigurable two-wire plasmonic circuits for terahertz communications. , 2021, , .		0
30	Continuous Fabrication of Suspended Core Polypropylene Fiber for THz Communications. , 2021, , .		0
31	The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review. Journal of Optics (United Kingdom), 2020, 22, 013001.	2.2	135
32	Overcoming the Abbe Diffraction Limit Using a Bundle of Metalâ€Coated Highâ€Refractiveâ€Index Sapphire Optical Fibers. Advanced Optical Materials, 2020, 8, 2000307.	7.3	18
33	Super-Resolution Orthogonal Deterministic Imaging Technique for Terahertz Subwavelength Microscopy. ACS Photonics, 2020, 7, 1866-1875.	6.6	16
34	Improving thermo-optic properties of smart windows via coupling to radiative coolers. Applied Optics, 2020, 59, D210.	1.8	6
35	Proof of concept for continuously-tunable terahertz bandpass filter based on a gradient metal-hole array. Optics Express, 2020, 28, 26228.	3.4	20
36	Nanoporous SiO2 based on annealed artificial opals as a favorable material platform of terahertz optics. Optical Materials Express, 2020, 10, 2100.	3.0	17

#	Article	IF	CITATIONS
37	Additive manufacturing of highly reconfigurable plasmonic circuits for terahertz communications. Optica, 2020, 7, 1112.	9.3	26
38	Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers. Photonics Research, 2020, 8, 1757.	7.0	36
39	Improving thermo-optic properties of smart windows via coupling to radiative coolers: publisher's note. Applied Optics, 2020, 59, 4198.	1.8	0
40	Super-resolution Terahertz Microscopy with Deterministic Artificial Fluorophores. , 2020, , .		0
41	Photonic Bandgap Bragg Waveguide-based Terahertz Microfluidic Sensor. , 2019, , .		0
42	Low-loss planar components for THz wireless communications. , 2019, , .		0
43	Reconfigurable Terahertz Array Antenna. , 2019, , .		2
44	Low-Loss Planar Components for THz Wireless Communications. , 2019, , .		0
45	High Bitrate Data Transmission Using Polypropylene Fiber in Terahertz Frequency Range. , 2019, , .		4
46	Experimental Demonstration of 5 Gbps Data Transmission Using Long Subwavelength Fiber at 140 GHz. , 2019, , .		1
47	Planar Porous Components for Low‣oss Terahertz Optics. Advanced Optical Materials, 2019, 7, 1900236.	7.3	17
48	Notice of Removal: Challenges in Terahertz Fiber Based Inter-device Communications. , 2019, , .		0
49	Low-loss planar porous components for terahertz beamforming. , 2019, , .		0
50	Surface Wave Enhanced Sensing in the Terahertz Spectral Range: Modalities, Materials, and Perspectives. Sensors, 2019, 19, 5505.	3.8	11
51	Terahertz photoconductive emitter with dielectric-embedded high-aspect-ratio plasmonic grating for operation with low-power optical pumps. AIP Advances, 2019, 9, .	1.3	43
52	Uniform-velocity spacetime crystals. Advanced Photonics, 2019, 1, 1.	11.8	47
53	Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications. Optics Express, 2019, 27, 27663.	3.4	24
54	All-Solid Flexible Fiber-Shaped Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A688-A695.	2.9	15

#	Article	IF	CITATIONS
55	Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ECS Transactions, 2018, 86, 57-69.	0.5	2
56	Live Streaming of Uncompressed HD and 4K Videos Using Terahertz Wireless Links. IEEE Access, 2018, 6, 58030-58042.	4.2	50
57	Sapphire Photonic Crystal Waveguides for Terahertz Sensing in Aggressive Environments. Advanced Optical Materials, 2018, 6, 1800573.	7.3	48
58	Reflection-mode continuous-wave 0.15 <i>λ</i> -resolution terahertz solid immersion microscopy of soft biological tissues. Applied Physics Letters, 2018, 113, .	3.3	80
59	Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica, 2018, 5, 109.	9.3	42
60	Statistical Models for Averaging of the Pump–Probe Traces: Example of Denoising in Terahertz Time-Domain Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 287-298.	3.1	7
61	Live Streaming of Uncompressed 4K Video Using Terahertz Wireless Links. , 2018, , .		3
62	Uncompressed HD and Ultra-HD Video Streaming Using Terahertz Wireless Communications. , 2018, , .		3
63	Toward real-time terahertz imaging. Advances in Optics and Photonics, 2018, 10, 843.	25.5	301
64	Exploiting k-space/frequency duality in Fourier optics toward real-time compression less terahertz imaging. , 2018, , .		1
65	Piezoelectric microstructured fibers via drawing of multimaterial preforms. , 2018, , .		0
66	Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ACS Nano, 2017, 11, 2103-2114.	14.6	99
67	Solid immersion terahertz imaging with sub-wavelength resolution. Applied Physics Letters, 2017, 110, .	3.3	69
68	Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity. Canadian Journal of Chemistry, 2017, 95, 169-173.	1.1	17
69	Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms. Scientific Reports, 2017, 7, 2907.	3.3	29
70	Real time transmission of ultra-high bit rate data using photonics based terahertz wireless communication system. , 2017, , .		0
71	A dynamically reconfigurable terahertz array antenna for 2D-imaging applications. , 2017, , .		5
72	Metallized 3D printed hollow core waveguide Bragg grating for dispersion compensation in terahertz range. , 2017, , .		1

#	Article	IF	CITATIONS
73	3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. , 2017, , .		3
74	Space-time (ST) reflection focusing in dispersion-engineered medium. , 2017, , .		0
75	3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. Optics Express, 2017, 25, 4126.	3.4	94
76	Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation. Optics Express, 2017, 25, 11009.	3.4	45
77	Dispersion Compensation in Terahertz Communication Links Using Metallized 3D Printed Hollow Core Waveguide Bragg Gratings. , 2017, , .		0
78	3D printed hollow core terahertz Bragg waveguide for surface sensing applications. , 2017, , .		2
79	3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors. , 2017, , .		0
80	Squeezed Hollow Core Photonic Bragg fiber for surface sensing applications. , 2017, , .		0
81	Diagrammatic explanation of the reverse Doppler effect in space-time modulated photonic crystals. , 2016, , .		0
82	Effect of Aging and PCBM Content on Bulk Heterojunction Organic Solar Cells Studied by Intensity Modulated Photocurrent Spectroscopy. ACS Applied Materials & Interfaces, 2016, 8, 28789-28799.	8.0	9
83	3D Printed Hollowâ€Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors. Advanced Optical Materials, 2016, 4, 2085-2094.	7.3	65
84	Frequency generation in moving photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1616.	2.1	10
85	Squeezed hollow-core photonic Bragg fiber for surface sensing applications. Optics Express, 2016, 24, 15687.	3.4	18
86	Linear rotary optical delay lines. Proceedings of SPIE, 2016, , .	0.8	0
87	Detection of analyte refractive index and concentration using liquid-core photonic Bragg fibers. Proceedings of SPIE, 2016, , .	0.8	1
88	Dynamic measurements at THz frequencies with a fast rotary delay line. , 2016, , .		0
89	Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-3068.	14.6	530
90	Hybrid Metal Wire-Dielectric THz Fibers: Design and Perspectives. , 2015, , .		0

#	Article	IF	CITATIONS
91	Dynamic measurements at terahertz frequencies with a fast rotary delay line. , 2015, , .		Ο
92	Dispersion Compensation in the Fiber-Based Terahertz Communication Links. , 2015, , .		0
93	Dynamic measurements at THz frequencies with a fast rotary delay line. , 2015, , .		0
94	Silk foam terahertz waveguides. , 2015, , .		1
95	Silk foam terahertz waveguides. , 2015, , .		0
96	Graded index porous optical fibers – dispersion management in terahertz range. Optics Express, 2015, 23, 7856.	3.4	49
97	Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers. Optics Express, 2015, 23, 22963.	3.4	23
98	Time Resolved Dynamic Measurements at THz Frequencies Using a Rotary Optical Delay Line. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 564-572.	3.1	20
99	Flexible fiber batteries for applications in smart textiles. Smart Materials and Structures, 2015, 24, 025012.	3.5	20
100	Graded Index Porous Optical Fibers $\hat{a} \in \hat{~}$ Dispersion Management in Terahertz Range. , 2015, , .		0
101	Hollow core terahertz optical fibers with hyperuniform disordered dielectric reflectors. , 2014, , .		2
102	Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2587.	2.1	45
103	Low-loss THz waveguide Bragg grating using a two-wire waveguide and a paper grating. , 2014, , .		0
104	Linear rotary optical delay lines. Optics Express, 2014, 22, 11812.	3.4	20
105	Silk Foam Terahertz Waveguides. Advanced Optical Materials, 2014, 2, 1181-1192.	7.3	26
106	Hybrid metal-dielectric THz fibers: Design and perspectives. , 2014, , .		0
107	Graded index microstructured polymer fiber for terahertz applications. , 2014, , .		0
108	Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber. Optics Letters, 2014, 39, 4835.	3.3	45

#	Article	IF	CITATIONS
109	Integrated terahertz multiparameter sensors using fiber/frequency selective surface couplers. Journal of Optics (United Kingdom), 2014, 16, 094007.	2.2	4
110	Hybrid plasmonic terahertz fibers for sensing applications. Applied Physics Letters, 2013, 103, 181118.	3.3	18
111	Probing terahertz frequency selective surfaces with subwavelength optical fibers. , 2013, , .		0
112	Planar Porous THz Waveguides for Low-Loss Guidance and Sensing Applications. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 96-102.	3.1	10
113	Bandgap-confined large-mode waveguides for surface plasmon-polaritons. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2898.	2.1	15
114	THz Fiber Bragg Gratings Sensor for Paper Quality Monitoring. , 2013, , .		0
115	Low-loss terahertz waveguide Bragg grating using a two-wire waveguide and a paper grating. Optics Letters, 2013, 38, 3089.	3.3	16
116	Photonic bandgap Bragg fiber sensors for bending/displacement detection. Applied Optics, 2013, 52, 6344.	1.8	11
117	Two-wire terahertz fibers with porous dielectric support. Optics Express, 2013, 21, 12728.	3.4	35
118	Probing terahertz metamaterials with subwavelength optical fibers. Optics Express, 2013, 21, 17195.	3.4	1
119	A complementary study to "Hybrid hollow core fibers with embedded wires as THz waveguides―and "Two-wire terahertz fibers with porous dielectric support:―comment. Optics Express, 2013, 21, 27802.	3.4	3
120	Transmission and propagation of terahertz waves in plastic waveguides. , 2013, , 28-61.		0
121	Flexible fiber batteries for applications in smart textiles. Materials Research Society Symposia Proceedings, 2013, 1489, 7.	0.1	3
122	Plasmonic two wire terahertz fibers with highly porous dielectric support. , 2013, , .		0
123	THz Bragg gratings by CO <inf>2</inf> laser inscription and their application to monitoring of paper quality. , 2013, , .		0
124	Terahertz multiparameter sensors based on frequency selective surfaces coupled to subwavelength fibers. , 2013, , .		0
125	Practical plasmonic terahertz fibers for sensing applications. , 2013, , .		0
126	Plasmonic two wire terahertz fibers with porous dielectric support. , 2013, , .		0

#	Article	IF	CITATIONS
127	Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings. Optics Letters, 2013, 38, 2200.	3.3	29
128	THz Bragg gratings by CO2 laser inscription and their application in paper quality monitoring. , 2013, , .		0
129	Micro-Displacement Sensors Based on Plastic Photonic Bandgap Bragg Fibers. , 2013, , .		Ο
130	Low-Loss THz Waveguide Bragg Grating using a Two-Wire Waveguide and a Micromachined Paper Grating. , 2013, , .		1
131	Plasmonic Two-Wire Terahertz Fibers with Highly Porous Dielectric Support. , 2013, , .		0
132	Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. Optics Express, 2012, 20, 5344.	3.4	64
133	Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2116.	2.1	16
134	Circular Fibres Made of Anisotropic Materials. , 2012, , 137-154.		0
135	Polarization-sensitive Magnetic Field Induced Modulation of Broadband THz Pulses in Liquid. , 2012, , .		1
136	Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO ₄ Cathode and Li ₄ Ti ₅ O ₁₂ Anode for Applications in Smart Textiles. Journal of the Electrochemical Society, 2012, 159, A349-A356.	2.9	119
137	A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Materials and Structures, 2012, 21, 015010.	3.5	39
138	Photonic Bandgap Fiber bundle spectrometer. , 2012, , .		0
139	Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid. Applied Physics Letters, 2012, 100, .	3.3	56
140	All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes. Sensors and Actuators B: Chemical, 2012, 161, 235-243.	7.8	13
141	Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers. Sensors and Actuators B: Chemical, 2012, 161, 261-268.	7.8	47
142	Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. , 2012, , .		1
143	Extreme optical nonlinearities in chalcogenide glass fibers embedded with metallic and semiconductor nanowires. Applied Physics Letters, 2011, 99, 121102.	3.3	9
144	Transmission measurements of hollow-core THz Bragg fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 896.	2.1	107

#	Article	IF	CITATIONS
145	High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 917.	2.1	58
146	Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Optics Express, 2011, 19, 9127.	3.4	72
147	Polymer microstructured optical fibers for terahertz wave guiding. Optics Express, 2011, 19, B848.	3.4	95
148	Photonic bandgap plasmonic waveguides. Optics Letters, 2011, 36, 2468.	3.3	7
149	Extreme nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires. Optics Letters, 2011, 36, 2527.	3.3	10
150	Giant nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires. , 2011, , .		0
151	Suspended core polymer fibers with isolated mode for terahertz guiding. , 2011, , .		Ο
152	Liquid-core low-refractive-index-contrast Bragg fiber sensor. Applied Physics Letters, 2011, 98, 201114.	3.3	35
153	Plastic fibers for terahertz wave guiding. , 2011, , .		2
154	Suspended core subwavelength fibers for practical low-loss terahertz guidance. , 2011, , .		0
155	Liquid filled hollow core photonic bandgap fiber sensor. , 2011, , .		Ο
156	Chromatic dispersion engineering in chalcogenide microporous fibers for the middle-infrared. , 2011, ,		0
157	Fabrication of allâ€polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films. Polymer Engineering and Science, 2010, 50, 1122-1127.	3.1	17
158	Propagation loss measurements of porous THz subwavelength fibers. , 2010, , .		0
159	High refractive index titania-doped polymers for THz hollow Bragg fibers: How absorption losses limit the index contrast. , 2010, , .		Ο
160	THz metamaterials using aligned metallic or semiconductor nanowires. , 2010, , .		1
161	Soft capacitor fibers for electronic textiles. Applied Physics Letters, 2010, 97, 133305.	3.3	25
162	Color tunable photonic textiles for wearable display applications. Proceedings of SPIE, 2010, , .	0.8	0

#	Article	IF	CITATIONS
163	Soft capacitor fibers using conductive polymers for electronic textiles. Smart Materials and Structures, 2010, 19, 115006.	3.5	37
164	Photonic bandgap fiber bundle spectrometer. Applied Optics, 2010, 49, 4791.	2.1	35
165	Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Optics Express, 2010, 18, 8647.	3.4	101
166	Spectral characterization of porous dielectric subwavelength THz ï¬bers fabricated using a microstructured molding technique. Optics Express, 2010, 18, 13813.	3.4	50
167	Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation. Optics Express, 2010, 18, 24632.	3.4	31
168	Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers. Springer Series on Chemical Sensors and Biosensors, 2010, , 43-72.	0.5	5
169	Loss and spectral measurements of porous and non-porous subwavelength THz fibers. , 2010, , .		0
170	Photonic Bandgap Fiber Bundle Spectrometer. , 2010, , .		0
171	Design and Fabrication of Photonic Crystal Fibers for Plasmonic Sensing, Applications from the Visible to THz. , 2010, , .		0
172	Chalcogenide Microporous Fibers for Nonlinear Applications in Mid-infrared. , 2010, , .		0
173	Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. Physical Review E, 2009, 79, 065601.	2.1	36
174	Analysis of the birefringence of solid-core air-silica microstructured fibers. , 2009, , .		4
175	High numerical aperture polymer microstructured fiber with three super-wavelength bridges. Journal of Optics, 2009, 11, 085102.	1.5	4
176	Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors. Journal of Sensors, 2009, 2009, 1-20.	1.1	82
177	Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: Comparison of the near and far field phase detection strategies. Sensors and Actuators B: Chemical, 2009, 143, 76-86.	7.8	17
178	Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1550.	2.1	86
179	Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Optics Express, 2009, 17, 8012.	3.4	94
180	Tunable structures comprising two photonic crystal slabs – optical study in view of multi-analyte enhanced detection. Optics Express, 2009, 17, 10623.	3.4	19

#	Article	IF	CITATIONS
181	Ferroelectric PVDF-based Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes. , 2009, , .		1
182	Design and Fabrication of subwavelength THz Fibers with Multiple Holes. , 2009, , .		0
183	Colorful Photonic Band Gap fiber-based textiles. , 2009, , .		0
184	Photonic Crystal Fiber and Waveguide-Based Surface Plasmon Resonance Sensors for Application in the Visible and Near-IR. Electromagnetics, 2008, 28, 198-213.	0.7	53
185	Low loss porous terahertz fibers containing multiple subwavelength holes. Applied Physics Letters, 2008, 92, .	3.3	134
186	Surface-plasmon-resonance-like fiber-based sensor at terahertz frequencies. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1771.	2.1	16
187	Porous polymer fibers for low-loss Terahertz guiding. Optics Express, 2008, 16, 6340.	3.4	214
188	Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers. Optics Express, 2008, 16, 14945.	3.4	15
189	Color-changing and color-tunable photonic bandgap fiber textiles. Optics Express, 2008, 16, 15677.	3.4	100
190	Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry. Optics Express, 2008, 16, 17962.	3.4	40
191	Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes. Optics Express, 2008, 16, 20206.	3.4	52
192	Fabrication strategies and potential applications of the "green―microstructured optical fibers. Journal of Biomedical Optics, 2008, 13, 054003.	2.6	7
193	All-fiber spectral filtering with solid core photonic band gap Bragg fibers. , 2008, , .		2
194	Novel photonic crystal fiber sensors using splitting of a degenerate plasmonic doublet. , 2008, , .		0
195	Bandgap guidance in planar photonic crystal waveguides. , 2008, , 93-109.		0
196	Designs of porous polymer THz fibers. Proceedings of SPIE, 2008, , .	0.8	1
197	Low loss THz fibers with multiple subwavelength holes. , 2008, , .		0
198	Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Applied Physics Letters, 2007, 90, 113514.	3.3	132

#	Article	IF	CITATIONS
199	Prospective for biodegradable microstructured optical fibers. Optics Letters, 2007, 32, 109.	3.3	81
200	Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers. Optics Letters, 2007, 32, 900.	3.3	12
201	Guiding in the visible with "colorful" solid-core Bragg fibers. Optics Letters, 2007, 32, 2882.	3.3	33
202	Heating of microstructured optical fibers due to absorption of the propagating light. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 756.	2.1	5
203	Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1423.	2.1	260
204	Boundary integral method for the challenging problems in bandgap guiding, plasmonics and sensing. Optics Express, 2007, 15, 10231.	3.4	21
205	Photonic bandgap fiber-based Surface Plasmon Resonance sensors. Optics Express, 2007, 15, 11413.	3.4	252
206	Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials. Applied Physics Letters, 2006, 88, 121107.	3.3	5
207	Transverse light guides in microstructured optical fibers. Optics Letters, 2006, 31, 314.	3.3	15
208	Transverse lightwave circuits in microstructured optical fibers: resonator arrays. Optics Express, 2006, 14, 1439.	3.4	5
209	Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters. Optics Express, 2006, 14, 4861.	3.4	7
210	Drawing of the hollow all-polymer Bragg fibers. Optics Express, 2006, 14, 5838.	3.4	52
211	Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide. Optics Express, 2006, 14, 8419.	3.4	29
212	Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Optics Express, 2006, 14, 11616.	3.4	376
213	Newtonian and Non-Newtonian Models of the Hollow All-Polymer Bragg Fiber Drawing. Journal of Lightwave Technology, 2006, 24, 4991-4999.	4.6	11
214	Photon crystal waveguide-based surface plasmon resonance biosensor. Applied Physics Letters, 2006, 89, 143518.	3.3	97
215	Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication. Journal of Materials Research, 2006, 21, 2246-2254.	2.6	61

216 Coupling between two collinear air-core Bragg fibers. , 2005, 5733, 206.

0

3

#	ARTICLE	IF	CITATIONS
217	Modeling the impact of imperfections in high index-contrast photonic waveguides. , 2005, 5733, 394.		0
218	Statistical analysis of geometrical imperfections from the images of 2D photonic crystals. Optics Express, 2005, 13, 2487.	3.4	60
219	Transverse lightwave circuits in microstructured optical fibers: waveguides. Optics Express, 2005, 13, 7506.	3.4	7
220	Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Optics Express, 2005, 13, 10327.	3.4	44
221	Design principles of multifiber resonant directional couplers with hollow Bragg fibers: ?example of a 3×3 coupler. Optics Letters, 2005, 30, 2849.	3.3	4
222	Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector. Optics Letters, 2005, 30, 2991.	3.3	49
223	The nature of a floating electron. Computational Materials Science, 2005, 32, 96-106.	3.0	15
224	Modeling the impact of imperfections in high-index-contrast photonic waveguides. Physical Review E, 2004, 70, 046609.	2.1	10
225	Coupling between two collinear air-core Bragg fibers. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 2095.	2.1	5
226	Hollow Bragg fiber bundles: $\hat{a} \in f$ when coupling helps and when it hurts. Optics Letters, 2004, 29, 1479.	3.3	5
227	Resonant directional coupling of hollow Bragg fibers. Optics Letters, 2004, 29, 2112.	3.3	5
228	Modeling the impact of manufacturing imperfections on photonic crystal device performance: design of perturbation-tolerant PBG components. , 2004, , .		0
229	Hollow Bragg fiber bundles: when coupling helps and when it hurts. , 2004, , .		0
230	Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. Optics Express, 2003, 11, 1175.	3.4	119
231	Quantitative characterization of higher-order mode converters in weakly multimoded fibers. Optics Express, 2003, 11, 2838.	3.4	30
232	Analysis of mode structure in hollow dielectric waveguide fibers. Physical Review E, 2003, 67, 046608.	2.1	75
233	Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions. Physical Review E, 2003, 67, 046613.	2.1	18

234 <title>Breaking the glass ceiling: hollow OmniGuide fibers</title>., 2002, 4655, 1.

#	Article	IF	CITATIONS
235	Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2867.	2.1	23
236	Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates. Optics Express, 2002, 10, 1227.	3.4	43
237	Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express, 2001, 9, 748.	3.4	361
238	Folding of viscous sheets and filaments. Europhysics Letters, 2000, 52, 532-538.	2.0	52
239	Photon modes in photonic crystals undergoing rigid vibrations and rotations. Physical Review B, 2000, 61, 15554-15557.	3.2	13
240	Rigid vibrations of a photonic crystal and induced interband transitions. Physical Review B, 2000, 61, 5293-5302.	3.2	18
241	Nonzero-temperature path-integral method for fermions and bosons: A grand canonical approach. Physical Review B, 1999, 60, 1433-1436.	3.2	4
242	Non-Arrhenius modes in the relaxation of model proteins. Journal of Chemical Physics, 1998, 109, 2528-2535.	3.0	34
243	Mapping of mutation-sensitive sites in proteinlike chains. Physical Review E, 1998, 58, 3572-3577.	2.1	7
244	A Deterministic Approach to the Protein Design Problem. Macromolecules, 1997, 30, 3403-3410.	4.8	15
245	Breaking the glass ceiling: hollow OmniGuide fibers. , 0, , .		2
246	Coupling, scattering, and perturbation theory: Semi-analytical analyses of photonic-crystal waveguides. , 0, , .		6
247	Hamiltonian formulation of Maxwell's equations (frequency consideration). , 0, , 14-58.		0
248	Hamiltonian formulation of Maxwell's equations for waveguides (propagation-constant) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50,222 Td (c

249	Single-step fabrication of highly sensitive biosensors Title Help. SPIE Newsroom, 0, , .	0.1	1
		0.1	