Maksim Skorobogatiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326730/publications.pdf

Version: 2024-02-01

249 papers 7,192 citations

45 h-index 79 g-index

281 all docs

281 docs citations

281 times ranked

5402 citing authors

#	Article	IF	Citations
1	Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-3068.	14.6	530
2	Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Optics Express, 2006, 14, 11616.	3.4	376
3	Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express, 2001, 9, 748.	3.4	361
4	Toward real-time terahertz imaging. Advances in Optics and Photonics, 2018, 10, 843.	25.5	301
5	Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1423.	2.1	260
6	Photonic bandgap fiber-based Surface Plasmon Resonance sensors. Optics Express, 2007, 15, 11413.	3.4	252
7	Porous polymer fibers for low-loss Terahertz guiding. Optics Express, 2008, 16, 6340.	3.4	214
8	The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review. Journal of Optics (United Kingdom), 2020, 22, 013001.	2.2	135
9	Low loss porous terahertz fibers containing multiple subwavelength holes. Applied Physics Letters, 2008, 92, .	3.3	134
10	Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Applied Physics Letters, 2007, 90, 113514.	3.3	132
11	Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. Optics Express, 2003, 11, 1175.	3.4	119
12	Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO $<$ sub $>$ 4 $<$ /sub $>$ Cathode and Li $<$ sub $>$ 4 $<$ /sub $>$ Ti $<$ sub $>$ 5 $<$ /sub $>$ 0 $<$ sub $>$ 12 $<$ /sub $>$ Anode for Applications in Smart Textiles. Journal of the Electrochemical Society, 2012, 159, A349-A356.	2.9	119
13	Transmission measurements of hollow-core THz Bragg fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 896.	2.1	107
14	Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Optics Express, 2010, 18, 8647.	3.4	101
15	Color-changing and color-tunable photonic bandgap fiber textiles. Optics Express, 2008, 16, 15677.	3.4	100
16	Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ACS Nano, 2017, 11, 2103-2114.	14.6	99
17	Photon crystal waveguide-based surface plasmon resonance biosensor. Applied Physics Letters, 2006, 89, 143518.	3.3	97
18	Polymer microstructured optical fibers for terahertz wave guiding. Optics Express, 2011, 19, B848.	3.4	95

#	Article	IF	Citations
19	Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Optics Express, 2009, 17, 8012.	3.4	94
20	3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. Optics Express, 2017, 25, 4126.	3.4	94
21	Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1550.	2.1	86
22	Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors. Journal of Sensors, 2009, 2009, 1-20.	1.1	82
23	Prospective for biodegradable microstructured optical fibers. Optics Letters, 2007, 32, 109.	3.3	81
24	Reflection-mode continuous-wave $0.15 < i > \hat{l} > < /i >$ -resolution terahertz solid immersion microscopy of soft biological tissues. Applied Physics Letters, 2018, 113, .	3.3	80
25	Analysis of mode structure in hollow dielectric waveguide fibers. Physical Review E, 2003, 67, 046608.	2.1	75
26	Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Optics Express, 2011, 19, 9127.	3.4	72
27	Solid immersion terahertz imaging with sub-wavelength resolution. Applied Physics Letters, 2017, 110, .	3.3	69
28	3D Printed Hollowâ€Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors. Advanced Optical Materials, 2016, 4, 2085-2094.	7.3	65
29	Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. Optics Express, 2012, 20, 5344.	3.4	64
30	Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication. Journal of Materials Research, 2006, 21, 2246-2254.	2.6	61
31	Statistical analysis of geometrical imperfections from the images of 2D photonic crystals. Optics Express, 2005, 13, 2487.	3.4	60
32	High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 917.	2.1	58
33	Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadband operation in a ferrofluid. Applied Physics Letters, 2012, 100, .	3.3	56
34	Photonic Crystal Fiber and Waveguide-Based Surface Plasmon Resonance Sensors for Application in the Visible and Near-IR. Electromagnetics, 2008, 28, 198-213.	0.7	53
35	Folding of viscous sheets and filaments. Europhysics Letters, 2000, 52, 532-538.	2.0	52
36	Drawing of the hollow all-polymer Bragg fibers. Optics Express, 2006, 14, 5838.	3.4	52

#	Article	IF	Citations
37	Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes. Optics Express, 2008, 16, 20206.	3.4	52
38	Spectral characterization of porous dielectric subwavelength THz i¬bers fabricated using a microstructured molding technique. Optics Express, 2010, 18, 13813.	3.4	50
39	Live Streaming of Uncompressed HD and 4K Videos Using Terahertz Wireless Links. IEEE Access, 2018, 6, 58030-58042.	4.2	50
40	Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector. Optics Letters, 2005, 30, 2991.	3.3	49
41	Graded index porous optical fibers – dispersion management in terahertz range. Optics Express, 2015, 23, 7856.	3.4	49
42	Sapphire Photonic Crystal Waveguides for Terahertz Sensing in Aggressive Environments. Advanced Optical Materials, 2018, 6, 1800573.	7.3	48
43	Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers. Sensors and Actuators B: Chemical, 2012, 161, 261-268.	7.8	47
44	Uniform-velocity spacetime crystals. Advanced Photonics, 2019, 1, 1.	11.8	47
45	Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2587.	2.1	45
46	Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber. Optics Letters, 2014, 39, 4835.	3.3	45
47	Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation. Optics Express, 2017, 25, 11009.	3.4	45
48	Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Optics Express, 2005, 13, 10327.	3.4	44
49	Cellular effects of terahertz waves. Journal of Biomedical Optics, 2021, 26, .	2.6	44
50	Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates. Optics Express, 2002, 10, 1227.	3.4	43
51	Terahertz photoconductive emitter with dielectric-embedded high-aspect-ratio plasmonic grating for operation with low-power optical pumps. AIP Advances, 2019, 9, .	1.3	43
52	Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica, 2018, 5, 109.	9.3	42
53	Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry. Optics Express, 2008, 16, 17962.	3.4	40
54	A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Materials and Structures, 2012, 21, 015010.	3.5	39

#	Article	IF	CITATIONS
55	Soft capacitor fibers using conductive polymers for electronic textiles. Smart Materials and Structures, 2010, 19, 115006.	3.5	37
56	Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. Physical Review E, 2009, 79, 065601.	2.1	36
57	Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers. Photonics Research, 2020, 8, 1757.	7.0	36
58	Photonic bandgap fiber bundle spectrometer. Applied Optics, 2010, 49, 4791.	2.1	35
59	Liquid-core low-refractive-index-contrast Bragg fiber sensor. Applied Physics Letters, 2011, 98, 201114.	3.3	35
60	Two-wire terahertz fibers with porous dielectric support. Optics Express, 2013, 21, 12728.	3.4	35
61	Non-Arrhenius modes in the relaxation of model proteins. Journal of Chemical Physics, 1998, 109, 2528-2535.	3.0	34
62	Guiding in the visible with "colorful" solid-core Bragg fibers. Optics Letters, 2007, 32, 2882.	3.3	33
63	Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation. Optics Express, 2010, 18, 24632.	3.4	31
64	Quantitative characterization of higher-order mode converters in weakly multimoded fibers. Optics Express, 2003, 11, 2838.	3.4	30
65	Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide. Optics Express, 2006, 14, 8419.	3.4	29
66	Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings. Optics Letters, 2013, 38, 2200.	3.3	29
67	Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms. Scientific Reports, 2017, 7, 2907.	3.3	29
68	Silk Foam Terahertz Waveguides. Advanced Optical Materials, 2014, 2, 1181-1192.	7.3	26
69	Additive manufacturing of highly reconfigurable plasmonic circuits for terahertz communications. Optica, 2020, 7, 1112.	9.3	26
70	Soft capacitor fibers for electronic textiles. Applied Physics Letters, 2010, 97, 133305.	3.3	25
71	Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications. Optics Express, 2019, 27, 27663.	3.4	24
72	Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2867.	2.1	23

#	Article	IF	CITATIONS
73	Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers. Optics Express, 2015, 23, 22963.	3.4	23
74	Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: brain tissue heterogeneity. Biomedical Optics Express, 2021, 12, 5272.	2.9	23
75	Quantitative super-resolution solid immersion microscopy via refractive index profile reconstruction. Optica, 2021, 8, 1471.	9.3	23
76	Boundary integral method for the challenging problems in bandgap guiding, plasmonics and sensing. Optics Express, 2007, 15, 10231.	3.4	21
77	Linear rotary optical delay lines. Optics Express, 2014, 22, 11812.	3.4	20
78	Time Resolved Dynamic Measurements at THz Frequencies Using a Rotary Optical Delay Line. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 564-572.	3.1	20
79	Flexible fiber batteries for applications in smart textiles. Smart Materials and Structures, 2015, 24, 025012.	3.5	20
80	Object-dependent spatial resolution of the reflection-mode terahertz solid immersion microscopy. Optics Express, 2021, 29, 3553.	3.4	20
81	Proof of concept for continuously-tunable terahertz bandpass filter based on a gradient metal-hole array. Optics Express, 2020, 28, 26228.	3.4	20
82	Tunable structures comprising two photonic crystal slabs – optical study in view of multi-analyte enhanced detection. Optics Express, 2009, 17, 10623.	3.4	19
83	Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits. Nature Communications, 2022, 13, .	12.8	19
84	Rigid vibrations of a photonic crystal and induced interband transitions. Physical Review B, 2000, 61, 5293-5302.	3.2	18
85	Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions. Physical Review E, 2003, 67, 046613.	2.1	18
86	Hybrid plasmonic terahertz fibers for sensing applications. Applied Physics Letters, 2013, 103, 181118.	3.3	18
87	Squeezed hollow-core photonic Bragg fiber for surface sensing applications. Optics Express, 2016, 24, 15687.	3.4	18
88	Overcoming the Abbe Diffraction Limit Using a Bundle of Metalâ€Coated Highâ€Refractiveâ€Index Sapphire Optical Fibers. Advanced Optical Materials, 2020, 8, 2000307.	7.3	18
89	Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: Comparison of the near and far field phase detection strategies. Sensors and Actuators B: Chemical, 2009, 143, 76-86.	7.8	17
90	Fabrication of allâ€polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films. Polymer Engineering and Science, 2010, 50, 1122-1127.	3.1	17

#	Article	IF	Citations
91	Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity. Canadian Journal of Chemistry, 2017, 95, 169-173.	1.1	17
92	Planar Porous Components for Low‣oss Terahertz Optics. Advanced Optical Materials, 2019, 7, 1900236.	7.3	17
93	Nanoporous SiO2 based on annealed artificial opals as a favorable material platform of terahertz optics. Optical Materials Express, 2020, 10, 2100.	3.0	17
94	Terahertz solid immersion microscopy: Recent achievements and challenges. Applied Physics Letters, 2022, 120, .	3.3	17
95	Surface-plasmon-resonance-like fiber-based sensor at terahertz frequencies. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1771.	2.1	16
96	Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2116.	2.1	16
97	Low-loss terahertz waveguide Bragg grating using a two-wire waveguide and a paper grating. Optics Letters, 2013, 38, 3089.	3.3	16
98	Super-Resolution Orthogonal Deterministic Imaging Technique for Terahertz Subwavelength Microscopy. ACS Photonics, 2020, 7, 1866-1875.	6.6	16
99	Broadband wide-angle terahertz antenna based on the application of transformation optics to a Luneburg lens. Scientific Reports, $2021, 11, 5230$.	3.3	16
100	Jamming a terahertz wireless link. Nature Communications, 2022, 13, .	12.8	16
101	A Deterministic Approach to the Protein Design Problem. Macromolecules, 1997, 30, 3403-3410.	4.8	15
102	The nature of a floating electron. Computational Materials Science, 2005, 32, 96-106.	3.0	15
103	Transverse light guides in microstructured optical fibers. Optics Letters, 2006, 31, 314.	3.3	15
104	Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers. Optics Express, 2008, 16, 14945.	3.4	15
105	Bandgap-confined large-mode waveguides for surface plasmon-polaritons. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2898.	2.1	15
106	All-Solid Flexible Fiber-Shaped Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A688-A695.	2.9	15
107	Fabrication and Characterization of an 8 $ ilde{A}$ — 8 Terahertz Photoconductive Antenna Array for Spatially Resolved Time Domain Spectroscopy and Imaging Applications. IEEE Access, 2021, 9, 117691-117702.	4.2	15
108	Photon modes in photonic crystals undergoing rigid vibrations and rotations. Physical Review B, 2000, 61, 15554-15557.	3.2	13

#	Article	IF	CITATIONS
109	All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes. Sensors and Actuators B: Chemical, 2012, 161, 235-243.	7.8	13
110	Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers. Optics Letters, 2007, 32, 900.	3.3	12
111	Newtonian and Non-Newtonian Models of the Hollow All-Polymer Bragg Fiber Drawing. Journal of Lightwave Technology, 2006, 24, 4991-4999.	4. 6	11
112	Photonic bandgap Bragg fiber sensors for bending/displacement detection. Applied Optics, 2013, 52, 6344.	1.8	11
113	Surface Wave Enhanced Sensing in the Terahertz Spectral Range: Modalities, Materials, and Perspectives. Sensors, 2019, 19, 5505.	3.8	11
114	Modeling the impact of imperfections in high-index-contrast photonic waveguides. Physical Review E, 2004, 70, 046609.	2.1	10
115	Extreme nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires. Optics Letters, 2011, 36, 2527.	3.3	10
116	Planar Porous THz Waveguides for Low-Loss Guidance and Sensing Applications. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 96-102.	3.1	10
117	Frequency generation in moving photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1616.	2.1	10
118	Extreme optical nonlinearities in chalcogenide glass fibers embedded with metallic and semiconductor nanowires. Applied Physics Letters, 2011, 99, 121102.	3.3	9
119	Effect of Aging and PCBM Content on Bulk Heterojunction Organic Solar Cells Studied by Intensity Modulated Photocurrent Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28789-28799.	8.0	9
120	Special Section Guest Editorial: Advances in Terahertz Biomedical Science and Applications. Journal of Biomedical Optics, 2021, 26, .	2.6	8
121	Opal-based terahertz optical elements fabricated by self-assembly of porous SiO ₂ nanoparticles. Optics Express, 2021, 29, 13764.	3.4	8
122	Infinity additive manufacturing of continuous microstructured fiber links for THz communications. Scientific Reports, 2022, 12, 4551.	3.3	8
123	Photonics based frequency hopping spread spectrum system for secure terahertz communications. Optics Express, 2022, 30, 27028.	3.4	8
124	Fabrication and characterization of a composite TiO ₂ -polypropylene high-refractive-index solid immersion lens for super-resolution THz imaging. Optical Materials Express, 2022, 12, 3015.	3.0	8
125	Mapping of mutation-sensitive sites in proteinlike chains. Physical Review E, 1998, 58, 3572-3577.	2.1	7
126	Transverse lightwave circuits in microstructured optical fibers: waveguides. Optics Express, 2005, 13, 7506.	3.4	7

#	Article	IF	Citations
127	Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters. Optics Express, 2006, 14, 4861.	3.4	7
128	Fabrication strategies and potential applications of the â€ægreen―microstructured optical fibers. Journal of Biomedical Optics, 2008, 13, 054003.	2.6	7
129	Photonic bandgap plasmonic waveguides. Optics Letters, 2011, 36, 2468.	3.3	7
130	Statistical Models for Averaging of the Pump–Probe Traces: Example of Denoising in Terahertz Time-Domain Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 287-298.	3.1	7
131	Coupling, scattering, and perturbation theory: Semi-analytical analyses of photonic-crystal waveguides. , 0, , .		6
132	Improving thermo-optic properties of smart windows via coupling to radiative coolers. Applied Optics, 2020, 59, D210.	1.8	6
133	Coupling between two collinear air-core Bragg fibers. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 2095.	2.1	5
134	Hollow Bragg fiber bundles:â€∫when coupling helps and when it hurts. Optics Letters, 2004, 29, 1479.	3.3	5
135	Resonant directional coupling of hollow Bragg fibers. Optics Letters, 2004, 29, 2112.	3.3	5
136	Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials. Applied Physics Letters, 2006, 88, 121107.	3.3	5
137	Transverse lightwave circuits in microstructured optical fibers: resonator arrays. Optics Express, 2006, 14, 1439.	3.4	5
138	Heating of microstructured optical fibers due to absorption of the propagating light. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 756.	2.1	5
139	A dynamically reconfigurable terahertz array antenna for 2D-imaging applications. , 2017, , .		5
140	Resonant Biochemical Sensors Based on Photonic Bandgap Waveguides and Fibers. Springer Series on Chemical Sensors and Biosensors, 2010, , 43-72.	0.5	5
141	Nonzero-temperature path-integral method for fermions and bosons: A grand canonical approach. Physical Review B, 1999, 60, 1433-1436.	3.2	4
142	Design principles of multifiber resonant directional couplers with hollow Bragg fibers: ?example of a 3×3 coupler. Optics Letters, 2005, 30, 2849.	3.3	4
143	Analysis of the birefringence of solid-core air-silica microstructured fibers. , 2009, , .		4
144	High numerical aperture polymer microstructured fiber with three super-wavelength bridges. Journal of Optics, 2009, 11, 085102.	1.5	4

#	Article	lF	CITATIONS
145	Integrated terahertz multiparameter sensors using fiber/frequency selective surface couplers. Journal of Optics (United Kingdom), 2014, 16, 094007.	2.2	4
146	High Bitrate Data Transmission Using Polypropylene Fiber in Terahertz Frequency Range., 2019,,.		4
147	<title>Breaking the glass ceiling: hollow OmniGuide fibers</title> ., 2002, 4655, 1.		3
148	A complementary study to "Hybrid hollow core fibers with embedded wires as THz waveguides―and "Two-wire terahertz fibers with porous dielectric support:―comment. Optics Express, 2013, 21, 27802.	3.4	3
149	Flexible fiber batteries for applications in smart textiles. Materials Research Society Symposia Proceedings, 2013, 1489, 7.	0.1	3
150	3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. , 2017, , .		3
151	Live Streaming of Uncompressed 4K Video Using Terahertz Wireless Links., 2018,,.		3
152	Uncompressed HD and Ultra-HD Video Streaming Using Terahertz Wireless Communications. , 2018, , .		3
153	Breaking the glass ceiling: hollow OmniGuide fibers. , 0, , .		2
154	All-fiber spectral filtering with solid core photonic band gap Bragg fibers. , 2008, , .		2
155	Hollow core terahertz optical fibers with hyperuniform disordered dielectric reflectors., 2014,,.		2
156	Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ECS Transactions, 2018, 86, 57-69.	0.5	2
157	Reconfigurable Terahertz Array Antenna. , 2019, , .		2
158	Plastic fibers for terahertz wave guiding. , 2011, , .		2
159	3D printed hollow core terahertz Bragg waveguide for surface sensing applications., 2017,,.		2
160	Continuously tunable middle-IR bandpass filters based on gradient metal-hole arrays for multispectral sensing and thermography. Journal of Applied Physics, 2022, 131, .	2.5	2
161	Designs of porous polymer THz fibers. Proceedings of SPIE, 2008, , .	0.8	1
162	Ferroelectric PVDF-based Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes., 2009,,.		1

#	Article	IF	CITATIONS
163	THz metamaterials using aligned metallic or semiconductor nanowires., 2010,,.		1
164	Polarization-sensitive Magnetic Field Induced Modulation of Broadband THz Pulses in Liquid., 2012,,.		1
165	Probing terahertz metamaterials with subwavelength optical fibers. Optics Express, 2013, 21, 17195.	3.4	1
166	Silk foam terahertz waveguides. , 2015, , .		1
167	Detection of analyte refractive index and concentration using liquid-core photonic Bragg fibers. Proceedings of SPIE, 2016, , .	0.8	1
168	Metallized 3D printed hollow core waveguide Bragg grating for dispersion compensation in terahertz range., 2017,,.		1
169	Experimental Demonstration of 5 Gbps Data Transmission Using Long Subwavelength Fiber at 140 GHz. , 2019, , .		1
170	Single-step fabrication of highly sensitive biosensors Title Help. SPIE Newsroom, 0, , .	0.1	1
171	Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. , 2012, , .		1
172	Low-Loss THz Waveguide Bragg Grating using a Two-Wire Waveguide and a Micromachined Paper Grating. , 2013, , .		1
173	Exploiting k-space/frequency duality in Fourier optics toward real-time compression less terahertz imaging. , 2018, , .		1
174	Ceramic-based metamaterial for THz sensing applications. , 2021, , .		1
175	Modeling the impact of manufacturing imperfections on photonic crystal device performance: design of perturbation-tolerant PBG components. , 2004, , .		0
176	Hollow Bragg fiber bundles: when coupling helps and when it hurts. , 2004, , .		0
177	Coupling between two collinear air-core Bragg fibers. , 2005, 5733, 206.		0
178	Modeling the impact of imperfections in high index-contrast photonic waveguides., 2005, 5733, 394.		0
179	Novel photonic crystal fiber sensors using splitting of a degenerate plasmonic doublet. , 2008, , .		0
180	Bandgap guidance in planar photonic crystal waveguides. , 2008, , 93-109.		0

#	Article	F	CITATIONS
181	Hamiltonian formulation of Maxwell's equations (frequency consideration)., 0,, 14-58.		О
182	Hamiltonian formulation of Maxwell's equations for waveguides (propagation-constant) Tj ETQq0 0 0 rgBT /Overloc	k 10 Tf	50,702 Td (c
183	Propagation loss measurements of porous THz subwavelength fibers. , 2010, , .		O
184	High refractive index titania-doped polymers for THz hollow Bragg fibers: How absorption losses limit the index contrast. , 2010 , , .		0
185	Color tunable photonic textiles for wearable display applications. Proceedings of SPIE, 2010, , .	0.8	0
186	Giant nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires. , $2011, , .$		0
187	Suspended core polymer fibers with isolated mode for terahertz guiding. , 2011, , .		0
188	Circular Fibres Made of Anisotropic Materials. , 2012, , 137-154.		0
189	Photonic Bandgap Fiber bundle spectrometer. , 2012, , .		0
190	Probing terahertz frequency selective surfaces with subwavelength optical fibers., 2013,,.		0
191	THz Fiber Bragg Gratings Sensor for Paper Quality Monitoring. , 2013, , .		O
192	Transmission and propagation of terahertz waves in plastic waveguides., 2013,, 28-61.		0
193	Plasmonic two wire terahertz fibers with highly porous dielectric support., 2013, , .		O
194	THz Bragg gratings by CO <inf>2</inf> laser inscription and their application to monitoring of paper quality. , 2013, , .		0
195	Terahertz multiparameter sensors based on frequency selective surfaces coupled to subwavelength fibers. , 2013, , .		O
196	Practical plasmonic terahertz fibers for sensing applications. , 2013, , .		0
197	Plasmonic two wire terahertz fibers with porous dielectric support., 2013,,.		0
198	Low-loss THz waveguide Bragg grating using a two-wire waveguide and a paper grating. , 2014, , .		0

#	Article	IF	CITATIONS
199	Hybrid metal-dielectric THz fibers: Design and perspectives. , 2014, , .		0
200	Graded index microstructured polymer fiber for terahertz applications. , 2014, , .		0
201	Hybrid Metal Wire-Dielectric THz Fibers: Design and Perspectives. , 2015, , .		O
202	Dynamic measurements at terahertz frequencies with a fast rotary delay line., 2015,,.		0
203	Dispersion Compensation in the Fiber-Based Terahertz Communication Links. , 2015, , .		0
204	Dynamic measurements at THz frequencies with a fast rotary delay line. , 2015, , .		0
205	Silk foam terahertz waveguides. , 2015, , .		0
206	Diagrammatic explanation of the reverse Doppler effect in space-time modulated photonic crystals. , 2016, , .		0
207	Linear rotary optical delay lines. Proceedings of SPIE, 2016, , .	0.8	0
208	Dynamic measurements at THz frequencies with a fast rotary delay line. , 2016, , .		0
209	Real time transmission of ultra-high bit rate data using photonics based terahertz wireless communication system. , 2017, , .		0
210	Space-time (ST) reflection focusing in dispersion-engineered medium., 2017,,.		0
211	Photonic Bandgap Bragg Waveguide-based Terahertz Microfluidic Sensor. , 2019, , .		0
212	Low-loss planar components for THz wireless communications. , 2019, , .		0
212	Low-loss planar components for THz wireless communications. , 2019, , . Low-Loss Planar Components for THz Wireless Communications. , 2019, , .		0
213	Low-Loss Planar Components for THz Wireless Communications. , 2019, , .		0

#	Article	IF	CITATIONS
217	Terahertz Communications Using Rod-in-air Dielectric Subwavelength Fiber., 2021,,.		O
218	Additive manufacturing of reconfigurable two-wire plasmonic circuits for terahertz communications. , $2021, , .$		0
219	Continuous Fabrication of Microstructured Waveguides for THz Communications Using Infinite 3D Printing., 2021,,.		0
220	Comparison of Wired and Wireless Channel for Short Range Frequency Hopping Terahertz System. , 2021, , .		0
221	Dielectric Fiber-assisted Terahertz Communication Links: Perspectives and Challenges for Onboard and Secure Communications. , 2021, , .		0
222	Wired Channel Modeling for Frequency Hopping System in Secure Terahertz Communications. , 2021, , .		0
223	Secure Bar Code Reader for the THz Region. , 2021, , .		O
224	Pencil Beams from Leaky-Wave Antenna for Terahertz Communications. , 2021, , .		0
225	Rapid Low-Cost Prototyping of Terahertz Metallic Metasurfaces. , 2021, , .		0
226	Low loss THz fibers with multiple subwavelength holes. , 2008, , .		0
227	Design and Fabrication of subwavelength THz Fibers with Multiple Holes. , 2009, , .		0
228	Colorful Photonic Band Gap fiber-based textiles. , 2009, , .		0
229	Loss and spectral measurements of porous and non-porous subwavelength THz fibers. , 2010, , .		0
230	Photonic Bandgap Fiber Bundle Spectrometer. , 2010, , .		0
231	Design and Fabrication of Photonic Crystal Fibers for Plasmonic Sensing, Applications from the Visible to THz. , 2010, , .		0
232	Chalcogenide Microporous Fibers for Nonlinear Applications in Mid-infrared. , 2010, , .		0
233	Suspended core subwavelength fibers for practical low-loss terahertz guidance. , 2011, , .		O
234	Liquid filled hollow core photonic bandgap fiber sensor. , 2011, , .		0

#	Article	IF	CITATIONS
235	Chromatic dispersion engineering in chalcogenide microporous fibers for the middle-infrared. , 2011, , .		0
236	THz Bragg gratings by CO2 laser inscription and their application in paper quality monitoring. , 2013, , .		0
237	Micro-Displacement Sensors Based on Plastic Photonic Bandgap Bragg Fibers., 2013,,.		0
238	Plasmonic Two-Wire Terahertz Fibers with Highly Porous Dielectric Support., 2013,,.		O
239	Graded Index Porous Optical Fibers – Dispersion Management in Terahertz Range. , 2015, , .		0
240	Dispersion Compensation in Terahertz Communication Links Using Metallized 3D Printed Hollow Core Waveguide Bragg Gratings. , 2017, , .		0
241	3D Printed Hollow-Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors. , 2017, , .		0
242	Squeezed Hollow Core Photonic Bragg fiber for surface sensing applications. , 2017, , .		0
243	Piezoelectric microstructured fibers via drawing of multimaterial preforms. , 2018, , .		0
244	Improving thermo-optic properties of smart windows via coupling to radiative coolers: publisher's note. Applied Optics, 2020, 59, 4198.	1.8	0
245	Highly Directional Antennas for Terahertz Communications. , 2021, , .		0
246	Terahertz Metallic Metasurfaces Prototyping Using Hot Stamping. , 2021, , .		0
247	Additive manufacturing of reconfigurable two-wire plasmonic circuits for terahertz communications., 2021,,.		0
248	Continuous Fabrication of Suspended Core Polypropylene Fiber for THz Communications., 2021,,.		0
249	Super-resolution Terahertz Microscopy with Deterministic Artificial Fluorophores. , 2020, , .		O