List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326717/publications.pdf Version: 2024-02-01

ALEXANDRE KUDUNSKI

#	Article	IF	CITATIONS
1	Stochastic modulational instability in the nonlinear Schrödinger equation with colored random dispersion. Physical Review A, 2022, 105, .	1.0	2
2	Phase-sensitive seeded modulation instability in passive fiber resonators. Communications Physics, 2022, 5, .	2.0	3
3	Experimental investigation of spontaneous and seeded modulation instability competition: route to the thermalization of the Fermi Pasta Ulam Tsingou recurrences. , 2022, , .		0
4	Optical parametric amplification seeded by four-wave mixing in photonic crystal fibers. , 2022, , .		0
5	Label-free highly multimodal nonlinear endoscope. Optics Express, 2022, 30, 25020.	1.7	7
6	The piston Riemann problem in a photon superfluid. Nature Communications, 2022, 13, .	5.8	8
7	Observation of the Fermi Pasta Ulam recurrences multiple symmetry breakings triggered by optical fiber losses. , 2021, , .		0
8	"Extraordinary―modulation instability in optics and hydrodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
9	Heterodyne Optical Time Domain Reflectometer Combined With Active Loss Compensation: A Practical Tool for Investigating Fermi Pasta Ulam Recurrence Process and Breathers Dynamics in Optical Fibers. Frontiers in Physics, 2021, 9, .	1.0	11
10	Modulational instability in optical fibers with randomly kicked normal dispersion. Physical Review A, 2021, 103, .	1.0	3
11	Loss induced multiple symmetry breakings in the Fermi Pasta Ulam recurrence process. , 2021, , .		0
12	Origin of spontaneous wave mixing processes in multimode GRIN fibers. Optics Express, 2021, 29, 30822.	1.7	4
13	Experimental investigation of short pulse Raman amplification with backward pumping. Optics Letters, 2021, 46, 5019.	1.7	3
14	Mid-infrared parametric wavelength conversion seeded with fiber optical parametric sources. EPJ Web of Conferences, 2021, 255, 11004.	0.1	0
15	Doubly periodic solutions of the focusing nonlinear Schrödinger equation: Recurrence, period doubling, and amplification outside the conventional modulation-instability band. Physical Review A, 2020, 101, .	1.0	43
16	Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy. Optics Express, 2020, 28, 15062.	1.7	17
17	Observation of four Fermi-Pasta-Ulam-Tsingou recurrences in an ultra-low-loss optical fiber. Optics Express, 2020, 28, 17773.	1.7	19
18	Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers. Optics Letters, 2020, 45, 3757.	1.7	16

#	Article	IF	CITATIONS
19	First Experimental Observation of Four Fermi-Pasta-Ulam- Tsingou Recurrences in an Optical Fiber. , 2020, , .		0
20	Real-Time Characterization of Period-Doubling Dynamics in Uniform and Dispersion Oscillating Fiber Ring Cavities. Physical Review X, 2019, 9, .	2.8	14
21	Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Communications Physics, 2019, 2, .	2.0	25
22	A readily usable twoâ€photon fluorescence lifetime microendoscope. Journal of Biophotonics, 2019, 12, e201800276.	1.1	9
23	Experimental Realization of Riemann Problem in Nonlinear Fiber Optics. , 2019, , .		1
24	Full-field characterization of breather dynamics over the whole length of an optical fiber. Optics Letters, 2019, 44, 763.	1.7	21
25	Experimental characterization of recurrences and separatrix crossing in modulational instability. Optics Letters, 2019, 44, 5426.	1.7	21
26	Emission of Dispersive Waves from Solitons in Axially Varying Optical Fibers. , 2019, , 301-316.		0
27	Nonlinear Modulational Instability: Recurrences, Broken Symmetry, and Breathers. , 2019, , .		Ο
28	Dynamics of photon fluid flows driven by optical pistons. , 2019, , .		0
29	Emission of Dispersive Waves from Solitons in Axially Varying Optical Fibers. , 2018, , 1-16.		Ο
30	Geometric parametric instability in periodically modulated graded-index multimode fibers. Physical Review A, 2018, 97, .	1.0	28
31	Fibre multi-wave mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence. Nature Photonics, 2018, 12, 303-308.	15.6	126
32	Low Noise High-Energy Dissipative Soliton Erbium Fiber Laser for Fiber Optical Parametric Oscillator Pumping. Applied Sciences (Switzerland), 2018, 8, 2161.	1.3	5
33	High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 <i>µ</i> m. Laser Physics Letters, 2018, 15, 115103.	0.6	12
34	Collision between a dark soliton and a linear wave in an optical fiber. Optics Express, 2018, 26, 23480.	1.7	7
35	Modulation instability in dispersion oscillating fibers. Advances in Optics and Photonics, 2018, 10, 1.	12.1	47
36	Towards two-photon excited endogenous fluorescence lifetime imaging microendoscopy. Biomedical Optics Express, 2018, 9, 142.	1.5	9

#	Article	IF	CITATIONS
37	The Impact of Compressed Femtosecond Laser Pulse Durations on Neuronal Tissue Used for Two-Photon Excitation Through an Endoscope. Scientific Reports, 2018, 8, 11124.	1.6	12
38	Two-dimensional nonlinear modes and frequency combs in bottle microresonators. Optics Letters, 2018, 43, 2680.	1.7	13
39	Grayness-dependent emission of dispersive waves from dark solitons in optical fibers. Optics Letters, 2018, 43, 1511.	1.7	11
40	High-resolution multimodal flexible coherent Raman endoscope. Light: Science and Applications, 2018, 7, 10.	7.7	116
41	Non-invasive distributed characterization in phase and intensity of the nonlinear stage of modulation instability. , 2018, , .		1
42	Versatile laser and optical amplifier for ultrafast imaging. , 2018, , .		0
43	Geometric parametric instability in modulated parabolic graded-index fibers. , 2018, , .		0
44	Spatio-temporal observation of the Fermi-Pasta-Ulam recurrence in optical fibers. , 2018, , .		0
45	Catastrophic process of coherence degradation. , 2018, , .		0
46	Observation of period-doubling dynamics of modulation instability in uniform and dispersion oscillating fiber-ring cavities. , 2018, , .		0
47	Efficient modelling of nonlinear propagation in multimode graded-index fibers. , 2018, , .		0
48	Non-destructive phase and intensity distributed measurements of the nonlinear stage of modulation instability in optical fibers. , 2018, , .		0
49	Instabilities in passive dispersion oscillating fiber ring cavities. European Physical Journal D, 2017, 71, 1.	0.6	7
50	Spectral and lifetime endomicroscopic measurements using one and two-photon excitation. Proceedings of SPIE, 2017, , .	0.8	0
51	Origins of spectral broadening of incoherent waves: Catastrophic process of coherence degradation. Physical Review A, 2017, 96, .	1.0	5
52	Dispersive Dam-Break Flow of a Photon Fluid. Physical Review Letters, 2017, 118, 254101.	2.9	60
53	Modulation Instability in Periodically Modulated Fibers. , 2017, , 95-113.		0

54 Parametric instability in a periodic multimode fiber. , 2017, , .

#	Article	IF	CITATIONS
55	Progress in nonlinear topographic optical fibers. , 2017, , .		Ο
56	Parasitic signals in hollow-core fibers used for SRS endoscopy. , 2017, , .		0
57	Observation of broken symmetry in the modulation instability recurrence. , 2017, , .		Ο
58	Modulational instabilities in the weak normal dispersion region of uniform fiber ring cavities. , 2017, ,		0
59	Spectral wings of the fiber supercontinuum and the dark-bright soliton interaction. Optics Express, 2017, 25, 10494.	1.7	13
60	Modulation instability in the weak dispersion regime of a dispersion modulated passive fiber-ring cavity. Optics Express, 2017, 25, 11283.	1.7	11
61	Longitudinal soliton tunneling in optical fiber. Optics Letters, 2017, 42, 2350.	1.7	10
62	Experimental investigation of dam-breaking problem in optical fibers. , 2017, , .		0
63	Modulation instability in the weak dispersion regime of dispersion oscillating fiber-ring cavities. , 2017, , .		0
64	Longitudinal soliton pure tunneling in optical fiber. , 2017, , .		0
65	Origin and suppression of parasitic signals in KagomÃ $ ilde{e}$ lattice hollow core fibers used for SRS microscopy and endoscopy. Optics Letters, 2017, 42, 1824.	1.7	7
66	Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity. Optics Letters, 2017, 42, 435.	1.7	14
67	Modulation instability in the weak normal dispersion region of passive fiber ring cavities. Optics Letters, 2017, 42, 3730.	1.7	13
68	Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers. Optics Letters, 2017, 42, 4004.	1.7	62
69	Modulation instability in the weak dispersion regime of dispersion oscillating fiber-ring cavity. , 2017, ,		0
70	Parametric instabilities in modulated fiber ring cavities. Optics Letters, 2016, 41, 5027.	1.7	24
71	Spectral and fluorescence lifetime endoscopic system using a double-clad photonic crystal fiber. Optics Letters, 2016, 41, 5214.	1.7	15
72	Interactions between solitons and dispersive waves in photonic crystal fibers. , 2016, , .		0

#	Article	IF	CITATIONS
73	Experimental observation of surface acoustic wave Brillouin scattering in a small-core photonic crystal fiber. , 2016, , .		2
74	Nonlinear endoscopy with KagomÃ $ m{ O}$ lattice hollow-core fibers (Conference Presentation). , 2016, , .		0
75	Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber. Physical Review A, 2016, 94, .	1.0	14
76	Emission of dispersive waves from a train of dark solitons in optical fibers. Optics Letters, 2016, 41, 2454.	1.7	21
77	Multiple QPM Resonant Radiations Induced by MI in Dispersion Oscillating Fibers. IEEE Photonics Technology Letters, 2016, 28, 740-743.	1.3	11
78	Roadmap on optical rogue waves and extreme events. Journal of Optics (United Kingdom), 2016, 18, 063001.	1.0	225
79	Characterization of fiber ultrashort pulse delivery for nonlinear endomicroscopy. Optics Express, 2016, 24, 12515.	1.7	13
80	Surface Brillouin scattering in photonic crystal fibers. Optics Letters, 2016, 41, 3269.	1.7	11
81	Cross-phase-modulation-instability band gap in a birefringence-engineered photonic-crystal fiber. Physical Review A, 2016, 93, .	1.0	9
82	Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators. Physical Review Letters, 2016, 116, 143901.	2.9	61
83	Heteroclinic Structure of Parametric Resonance in the Nonlinear SchrĶdinger Equation. Physical Review Letters, 2016, 117, 013901.	2.9	25
84	Shock wave generation triggered by a weak background in optical fibers. Optics Letters, 2016, 41, 2656.	1.7	34
85	Solitonization of a dispersive wave. Optics Letters, 2016, 41, 1412.	1.7	17
86	Single-frequency Raman fiber amplifier emitting 11 μj 150 W peak-power at 1645 nm for remote methane sensing applications. , 2016, , .		2
87	Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line. Optics Letters, 2016, 41, 115.	1.7	0
88	Observation of the breaking of a pulse on a weak background in optical fibers. , 2016, , .		0
89	Observation of surface Brillouin scattering in microstructured optical fibers. , 2016, , .		0
90	Transformation of a dispersive wave into a fundamental soliton. , 2016, , .		0

#	Article	IF	CITATIONS
91	Heteroclinic Structure of Parametric Resonance in Fibers with Periodic Dispersion. , 2016, , .		0
92	Roundtrip-to-roundtrip evolution of Faraday and Turing instabilities in dispersion oscillating fiber ring resonators. , 2016, , .		0
93	Characterization of a customized double-clad photonic crystal fiber and gradient index lens for non-linear excitation. , 2016, , .		0
94	Nonlinear Stage of Modulation Instability in Dispersion Oscillating Fibers. , 2016, , .		0
95	Nonlinear phase added by a Raman fiber amplifier to a single-frequency seed laser. , 2016, , .		2
96	Ultra-wideband fiber optical parametric amplifier for spectrally-encoded microscopy (Conference) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

97	Optimal frequency conversion in the nonlinear stage of modulation instability. Optics Express, 2015, 23, 30861.	1.7	26
98	Optical event horizons from the collision of a soliton and its own dispersive wave. Physical Review A, 2015, 92, .	1.0	36
99	Modulational instability in dispersion-kicked optical fibers. Physical Review A, 2015, 92, .	1.0	9
100	Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Scientific Reports, 2015, 5, 18303.	1.6	107
101	Multimode Brillouin scattering in a long tapered birefringent photonic crystal fiber. , 2015, , .		0
102	Modulation instability in amplitude modulated dispersion oscillating fibers. Optics Express, 2015, 23, 3869.	1.7	19
103	Parametric excitation of multiple resonant radiations from localized wavepackets. Scientific Reports, 2015, 5, 9433.	1.6	55
104	12 THz flat gain fiber optical parametric amplifiers with dispersion varying fibers. Optics Express, 2015, 23, 10103.	1.7	22
105	A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter/amplifier based on a 1064 nm pump source. Optics Express, 2015, 23, 13025.	1.7	2
106	Bouncing of a dispersive wave in a solitonic cage. Optics Letters, 2015, 40, 3320.	1.7	40
107	Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton. Optics Express, 2015, 23, 16595.	1.7	21
108	Enhanced structural sensitivity of hybrid-mode acoustic phonons in axially-varying photonic crystal fiber. Optics Express, 2015, 23, 23329.	1.7	0

#	Article	IF	CITATIONS
109	Simultaneous control of the wavelength and duration of Raman-shifting solitons using topographic photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2146.	0.9	4
110	Soliton annihilation into a polychromatic dispersive wave. Optics Letters, 2015, 40, 2142.	1.7	7
111	110  nm versatile fiber optical parametric amplifier at 10  î¼m. Optics Letters, 2015, 40, 4090.	1.7	5
112	Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber. Optics Letters, 2015, 40, 4281.	1.7	7
113	Topographic optical fibers: a new degree of freedom in nonlinear optics. , 2015, , .		0
114	Gain-spectrum flattening in a wideband parametric amplifier at 1.0 μm. , 2015, , .		0
115	Topographic optical fibers: a new degree of freedom in nonlinear optics. , 2015, , .		Ο
116	Experimental dynamics of Akhmediev breathers in a dispersion varying optical fiber. Optics Letters, 2014, 39, 4490.	1.7	25
117	Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber. Optica, 2014, 1, 243.	4.8	37
118	Continuousâ€wave dualâ€pump fibre optical parametric amplifier around 1 µm. Electronics Letters, 2014, 50, 107-108.	0.5	3
119	All-fiber optical parametric amplifier for life-science application. , 2014, , .		1
120	Modulational instability in dispersion oscillating fiber ring cavities. Optics Letters, 2014, 39, 4200.	1.7	48
121	Emission of multiple dispersive waves from a single Raman-shifting soliton in an axially-varying optical fiber. Optics Express, 2014, 22, 25673.	1.7	17
122	Correlation between multiple modulation instability side lobes in dispersion oscillating fiber. Optics Letters, 2014, 39, 1881.	1.7	21
123	Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 10  μm. Optics Letters, 2014, 39, 5989.	1.7	31
124	Fermi-Pasta-Ulam Recurrence in Nonlinear Fiber Optics: The Role of Reversible and Irreversible Losses. Physical Review X, 2014, 4, .	2.8	37
125	Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons. Journal of Biomedical Optics, 2014, 19, 086021.	1.4	6
126	Sensitivity enhancement by all-fiber optical parametric amplifier for bioimaging at 1.0 μm. , 2014, , .		0

#	Article	IF	CITATIONS
127	Topographic optical fibers: new perspectives in guided optics. , 2014, , .		0
128	Experimental investigation of correlation between multiple side lobes of modulation instability in dispersion oscillating fiber. , 2014, , .		0
129	Modulational instability and pulse generation in dispersion oscillating fiber ring cavities. , 2014, , .		1
130	Real time spectra and wavelength correlation maps: New insights into octave-spanning supercontinuum generation and rogue waves. , 2013, , .		0
131	Spontaneous generation of spectral incoherent solitons through supercontinuum generation. , 2013, , .		0
132	Dynamics of the modulation instability spectrum in optical fibers with oscillating dispersion. Physical Review A, 2013, 87, .	1.0	45
133	Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber. Optics Express, 2013, 21, 8437.	1.7	32
134	Amplification of ultra-short optical pulses in a two-pump fiber optical parametric chirped pulse amplifier. Optics Express, 2013, 21, 12197.	1.7	12
135	Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion. Optics Express, 2013, 21, 15826.	1.7	18
136	Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Optics Express, 2013, 21, 18452.	1.7	87
137	Fourth-order dispersion mediated modulation instability in dispersion oscillating fibers. Optics Letters, 2013, 38, 3464.	1.7	30
138	Modulational instability phase-matched by higher-order dispersion terms in dispersion-oscillating optical fibers. , 2013, , .		0
139	Dispersive time stretching measurements of real-time spectra and statistics for supercontinuum generation around 1550 nm. , 2013, , .		0
140	Appearances and disappearances of Fermi Pasta Ulam recurrence in nonlinear fiber optics. , 2013, , .		0
141	Stabilizing optical rogue waves with fiber topography. , 2013, , .		0
142	Double-seed stabilization of a continuum generated from fourth-order modulation instability. , 2013, ,		0
143	Control of the soliton self-frequency shift dynamics using topographic optical fibers. Optics Letters, 2013, 38, 3390.	1.7	18
144	Compact and broadly tunable near-visible parametric wavelength converter based on polarization-maintaining photonic-crystal fiber. , 2013, , .		0

#	Article	IF	CITATIONS
145	Amplification of ultrashort optical pulses in a two-pump fiber optical parametric chirped pulse amplifier. , 2013, , .		0
146	Solid-Core Photonic Bandgap Fiber for the Generation of Tunable High-Energy Solitons. , 2013, , .		3
147	Control of the Soliton Self-Frequency Shift using PCF Tapers with Tailored Longitudinal Profiles. , 2013, , .		0
148	Modulation instability in optical fibers with oscillating dispersion. , 2013, , .		0
149	Scalar and vector modulational instability induced by parametric resonance in periodically tapered PCFs. , 2013, , .		0
150	Highly-nonlinear photonic crystal fibre with high figure of merit around 1â€[micro sign]m. Electronics Letters, 2012, 48, 232.	0.5	8
151	20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 µm using a dispersion-stabilized photonic crystal fiber. Optics Express, 2012, 20, 28906.	1.7	30
152	Active reduction of fluctuations in fourth-order modulation instability. Optics Letters, 2012, 37, 4305.	1.7	3
153	Black-light continuum generation in a silica-core photonic crystal fiber. Optics Letters, 2012, 37, 130.	1.7	19
154	Synchronously pumped photonic crystal fiber-based optical parametric oscillator. Optics Letters, 2012, 37, 3156.	1.7	13
155	Opto-acoustic coupling and Brillouin phenomena in microstructure optical fibers. , 2012, , .		0
156	Experimental demonstration of modulation instability in an optical fiber with a periodic dispersion landscape. Optics Letters, 2012, 37, 4832.	1.7	72
157	Recent advances in the design of photonic bandgap and hybrid fibers: from LMA to HNL fibers. Proceedings of SPIE, 2012, , .	0.8	0
158	Supercontinuum generation in the black light region by pumping at 355 nm a silica photonic crystal fiber. Proceedings of SPIE, 2012, , .	0.8	0
159	Demonstration of Modulation Instability Assisted by a Periodic Dispersion Landscape in an Optical Fiber. , 2012, , .		1
160	Partition of the instantaneous and delayed nonlinear responses for the propagation of ultrashort solitons in optical fibers. Physical Review A, 2012, 85, .	1.0	2
161	Benefits of Photonic Bandgap Fibers for the Thermal Stabilization of Optoelectronic Oscillators. IEEE Photonics Journal, 2012, 4, 789-794.	1.0	9
162	Loaded dice. Nature Photonics, 2012, 6, 415-416.	15.6	8

#	Article	IF	CITATIONS
163	Optimization of continuous-wave supercontinuum generation. Optical Fiber Technology, 2012, 18, 322-326.	1.4	8
164	SBS Mitigation in a Microstructured Optical Fiber by Periodically Varying the Core Diameter. IEEE Photonics Technology Letters, 2012, 24, 667-669.	1.3	12
165	Temperature Dependence of the Zero Dispersion Wavelength in a Photonic Crystal Fiber. IEEE Photonics Technology Letters, 2012, 24, 431-433.	1.3	6
166	Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Scientific Reports, 2012, 2, 882.	1.6	137
167	Manipulating the Propagation of Solitons with Solid-Core Photonic Bandgap Fibers. International Journal of Optics, 2012, 2012, 1-12.	0.6	2
168	Supercontinuum generation with picosecond ultraviolet pulses in a solid-core photonic crystal fiber. , 2012, , .		0
169	Experimental demonstration of all-fiber continuous wave optical parametric amplifier operating at 1 ŵm. , 2012, , .		0
170	Spontaneous Generation of Spectral Incoherent Solitons through Supercontinuum Generation. , 2012, , .		0
171	Highly nonlinear photonic crystal fiber with an unprecedented high figure of merit at $1{ m \hat{l}}$ 4m. , 2012, , .		0
172	Twofold enhancement of the gain bandwidth in two pumps fiber optical parametric chirped pulse amplifiers. , 2012, , .		0
173	Highly nonlinear photonic crystal fiber with an unprecedented high figure of merit at 1 ŵm. , 2012, , .		Ο
174	Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers. IEEE Photonics Technology Letters, 2011, 23, 609-611.	1.3	9
175	Emergence of spectral incoherent solitons through supercontinuum generation in a photonic crystal fiber. Physical Review E, 2011, 84, 066605.	0.8	30
176	High gain fiber optical parametric chirped pulse amplification of femtosecond pulses at 1 µm. , 2011, , .		0
177	Enhanced soliton self-frequency shift and CW supercontinuum generation in GeO_2-doped core photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1152.	0.9	22
178	Dynamics of fiber optical parametric chirped pulse amplifiers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2848.	0.9	24
179	Transient radiation-induced effects on solid core microstructured optical fibers. Optics Express, 2011, 19, 21760.	1.7	25
180	Multicore fiber for cold-atomic cloud monitoring. Optics Express, 2011, 19, 22936.	1.7	2

#	Article	IF	CITATIONS
181	Symmetry-breaking dynamics of the modulational instability spectrum. Optics Letters, 2011, 36, 1359.	1.7	39
182	Third-order dispersion drastically changes parametric gain in optical fiber systems. Physical Review A, 2011, 83, .	1.0	13
183	Conservation of the photon number in the generalized nonlinear SchrĶdinger equation in axially varying optical fibers. Physical Review A, 2011, 84, .	1.0	10
184	Non-Solitonic Extension of Supercontinua. , 2011, , .		0
185	Phosphorus-Doped Photonic Crystal Fibers for High-Power (36 W) Visible CW Supercontinuum. IEEE Photonics Journal, 2011, 3, 815-820.	1.0	18
186	Widely Tunable Parametric Amplification and Pulse Train Generation by Heating a Photonic Crystal Fiber. IEEE Journal of Quantum Electronics, 2011, 47, 1514-1518.	1.0	14
187	Simple method for measuring the zero-dispersion wavelength in optical fibers. , 2011 , , .		1
188	Symmetry-breaking dynamics of the modulational instability spectrum. , 2011, , .		1
189	Control of supercontinuum pulse-to-pulse fluctuations by fiber tapering. , 2011, , .		0
190	Supercontinuum pulse-to-pulse fluctuations in a photonic bandgap fiber. , 2011, , .		0
191	Suppression of SBS in a photonic crystal fiber with periodically-varied core diameter. , 2011, , .		2
192	Taper topography control of instabilities and rogue waves in supercontinuum fibers. , 2011, , .		1
193	High gain fiber optical parametric chirped pulse amplification of femtosecond pulses at 1 ŵm. , 2011, , .		0
194	Enhanced soliton self-frequency shift and white-light CW supercontinuum generation in germanosilicate-core PCFs. , 2010, , .		0
195	Third-order dispersion for generating optical rogue solitons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 691-695.	0.9	106
196	All-fiber optical parametric amplifier at 1 μm using a microstructured fiber. , 2010, , .		0
197	Chirped pulse amplification in a fiber optical parametric amplifier. Proceedings of SPIE, 2010, , .	0.8	0
198	First Experimental Demonstration of Optical Parametric Chirped Pulse Amplification in an Optical Fiber. , 2010, , .		0

#	Article	IF	CITATIONS
199	All-fiber tunable optical delay line. Optics Express, 2010, 18, 3093.	1.7	78
200	Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy. Optics Express, 2010, 18, 16640.	1.7	32
201	Photonic crystal fiber mapping using Brillouin echoes distributed sensing. Optics Express, 2010, 18, 20136.	1.7	21
202	Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solid-core photonic bandgap fibers. Optics Express, 2010, 18, 24352.	1.7	12
203	Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions. Optics Express, 2010, 18, 24729.	1.7	23
204	Control of pulse-to-pulse fluctuations in visible supercontinuum. Optics Express, 2010, 18, 27445.	1.7	50
205	Microstructured fiber source of photon pairs at widely separated wavelengths. Optics Letters, 2010, 35, 499.	1.7	28
206	Impact of the third-order dispersion on the modulation instability gain of pulsed signals. Optics Letters, 2010, 35, 1194.	1.7	33
207	Experimental demonstration of optical parametric chirped pulse amplification in optical fiber. Optics Letters, 2010, 35, 1786.	1.7	42
208	High-gain fiber, optical-parametric, chirped-pulse amplification of femtosecond pulses at 1 μm. Optics Letters, 2010, 35, 3480.	1.7	42
209	Optical Parametric Chirped Pulse Amplification in an Optical Fiber. Optics and Photonics News, 2010, 21, 34.	0.4	6
210	Demonstration of an All-Fiber Broadband Optical Parametric Amplifier at 1 \$mu\$m. Journal of Lightwave Technology, 2010, 28, 2173-2178.	2.7	16
211	Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2328.	0.9	22
212	Effect of inhomogeneities on backward and forward Brillouin scattering in photonic crystal fibers. Proceedings of SPIE, 2010, , .	0.8	1
213	White-light continuous-wave supercontinuum source. , 2010, , .		1
214	Observation of brillouin linewidth broadening and decay time in photonic crystal fiber. , 2010, , .		0
215	Distributed measurement of modulation instability along optical fibers. , 2010, , .		2
216	Experimental observation of Brillouin linewidth broadening and decay time in photonic crystal fiber. , 2010, , .		1

#	Article	IF	CITATIONS
217	Rogue Waves in Optics. , 2010, , .		0
218	Cancellation of the Soliton Self-Frequency Shift near the Bandgap Edge of Solid-Core Photonic Bandgap Fibers. , 2010, , .		0
219	Supercontinuum generation in solid-core photonic bandgap fibers. , 2009, , .		0
220	Polarization maintaining square lattice multicore fiber. , 2009, , .		0
221	Parametric amplification and wavelength conversion in the 1040–1090 nm band by use of a photonic crystal fiber. Applied Physics Letters, 2009, 94, 111104.	1.5	26
222	Convective Instabilities and Optical Rogue Waves in Fibers with CW Pumping. , 2009, , .		5
223	Thermodynamic approach of supercontinuum generation. , 2009, , .		0
224	Are optical rogue waves giant solitons?. , 2009, , .		0
225	Thermodynamic approach of statistical nonlinear optics. , 2009, , .		0
226	19.5â€W CW-pumped supercontinuum source from 0.65 to 1.38â€[micro sign]m. Electronics Letters, 2009, 45, 29.	0.5	22
227	Discrete focusing in an optical fiber with a two-dimensional square array of coupled waveguides. Optics Letters, 2009, 34, 2536.	1.7	5
228	Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers. Optics Letters, 2009, 34, 3083.	1.7	43
229	White-light cw-pumped supercontinuum generation in highly GeO_2-doped-core photonic crystal fibers. Optics Letters, 2009, 34, 3631.	1.7	65
230	Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber. Optics Express, 2009, 17, 7392.	1.7	60
231	Observation of extreme temporal events in CW-pumped supercontinuum. Optics Express, 2009, 17, 17010.	1.7	134
232	Dispersion-Engineered Photonic Crystal Fibers for CW-Pumped Supercontinuum Sources. Journal of Lightwave Technology, 2009, 27, 1556-1564.	2.7	53
233	CW-pumped Supercontinuum Generation in Dispersion-Tailored Photonic Crystal Fibers. , 2009, , .		0
234	Demonstration of Parametric Amplification at 1µm by use of a Microstructured Optical Fiber. , 2009, , .		0

#	Article	IF	CITATIONS
235	Overview on Solid Core Photonic BandGap Fibers. Fiber and Integrated Optics, 2009, 28, 27-50.	1.7	18
236	Thermodynamic Approach of Supercontinuum Generation in Photonic Crystal Fiber. , 2009, , .		0
237	Electron beam poling in amorphous Ge-doped H:SiO2 films. Journal of Non-Crystalline Solids, 2008, 354, 472-475.	1.5	3
238	Visible cw-pumped supercontinuum. Optics Letters, 2008, 33, 2407.	1.7	70
239	Experimental investigation of combined four-wave mixing and Raman effect in the normal dispersion regime of a photonic crystal fiber. Optics Letters, 2008, 33, 2488.	1.7	22
240	Extended blue side of flat supercontinuum generation in PCFs with a CW Yb fiber laser. , 2008, , .		2
241	CW Supercontinuum Generation in Photonic Crystal Fibres with Two Zero-Dispersion Wavelengths. AIP Conference Proceedings, 2008, , .	0.3	7
242	Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields. Journal of Applied Physics, 2008, 103, .	1.1	12
243	Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers. Applied Physics Letters, 2008, 92, 141103.	1.5	13
244	Multi-watt supercontinuum generation from 0.3 to 2.4 μm in PCF tapers. , 2007, , .		1
245	Influence of electrode composition on the second-order nonlinearity profile in thermally poled silica glass. Optics Letters, 2007, 32, 1773.	1.7	1
246	Stabilization of the second-order susceptibility induced in a sulfide chalcogenide glass by thermal poling. Journal of Applied Physics, 2007, 101, 084905.	1.1	9
247	Multi-watt supercontinuum generation from 0.3 to 2.4 μm in PCF tapers. , 2007, , .		1
248	Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation. Advanced Functional Materials, 2007, 17, 3284-3294.	7.8	54
249	Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics. Optical Materials, 2007, 30, 338-345.	1.7	29
250	Comparative determinations of the /spl chi//sup (2)/ spatial distribution induced in thermally poled silica planar samples. IEEE Photonics Technology Letters, 2006, 18, 1049-1051.	1.3	0
251	High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling. Optics Express, 2006, 14, 1524.	1.7	36
252	Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14, 5715.	1.7	230

#	Article	IF	CITATIONS
253	Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments. Optics Express, 2006, 14, 12984.	1.7	10
254	Stability of electron-beam poling in N or Ge-doped H:SiO2 films. Applied Physics Letters, 2006, 88, 241919.	1.5	13
255	Second-harmonic generation improvement in sulfide glasses. , 2005, 5949, 202.		0
256	Electron-beam poling in undoped, N- or Ge-doped MDECR H:SiO2 films. Applied Physics A: Materials Science and Processing, 2005, 81, 1213-1219.	1.1	8
257	Room temperature aging of the χ(2) susceptibility induced in silica glasses by thermal poling. Applied Physics Letters, 2005, 86, 161909.	1.5	8
258	Near-surface modification of the third-order nonlinear susceptibility in thermally poled Infrasilâ,,¢ glasses. Applied Physics Letters, 2005, 86, 181106.	1.5	16
259	Measurement of depletion region width in poled silica. Applied Optics, 2005, 44, 5793.	2.1	4
260	Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 598.	0.9	26
261	Second-harmonic generation of thermally poled chalcogenide glass. Optics Express, 2005, 13, 789.	1.7	55
262	Modeling of the χ^(2) susceptibility time-evolution in thermally poled fused silica. Optics Express, 2005, 13, 8015.	1.7	56
263	Time evolution of second-order nonlinear profiles induced within thermally poled silica samples. Optics Letters, 2005, 30, 1039.	1.7	31
264	Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution. Applied Physics Letters, 2003, 83, 3623-3625.	1.5	38
265	Evidence of second-order nonlinear susceptibility sign reversal in thermally poled samples. Applied Physics Letters, 2003, 83, 3242-3244.	1.5	8
266	Thermal poling with alternating voltage: a way to increase the second order nonlinearity. , 2003, 4943, 176.		0
267	Method to improve thermal poling efficiency in silica glasses. Electronics Letters, 2002, 38, 570.	0.5	8