
Shu-Hui Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isobolographic Analysis of Antiseizure Activity of the GABA Type A Receptor-Modulating Synthetic Neurosteroids Brexanolone and Ganaxolone with Tiagabine and Midazolam. Journal of Pharmacology and Experimental Therapeutics, 2020, 372, 285-298.	2.5	32
2	Zinc reduces antiseizure activity of neurosteroids by selective blockade of extrasynaptic GABA-A receptor-mediated tonic inhibition in the hippocampus. Neuropharmacology, 2019, 148, 244-256.	4.1	19
3	3 <i>β</i> -Methyl-Neurosteroid Analogs Are Preferential Positive Allosteric Modulators and Direct Activators of Extrasynaptic <i>δ</i> -Subunit <i>γ</i> -Aminobutyric Acid Type A Receptors in the Hippocampus Dentate Gyrus Subfield. Journal of Pharmacology and Experimental Therapeutics, 2018, 365. 583-601.	2.5	32
4	Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 180-197.	2.5	102
5	Neuroendocrine aspects of improving sleep in epilepsy. Epilepsy Research, 2018, 147, 32-41.	1.6	24
6	Zinc Selectively Blocks Neurosteroid-Sensitive Extrasynaptic ÂGABAA Receptors in the Hippocampus. Journal of Neuroscience, 2016, 36, 8070-8077.	3.6	33
7	AID downregulation is a novel function of the DNMT inhibitor 5-aza-deoxycytidine. Oncotarget, 2014, 5, 211-223.	1.8	12
8	Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Scientific Reports, 2013, 3, 3219.	3.3	59
9	Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells. Neoplasia, 2012, 14, 463-IN3.	5.3	36
10	Sulforaphane inhibition of monocyte adhesion via the suppression of ICAM-1 and NF-κB is dependent upon glutathione depletion in endothelial cells. Vascular Pharmacology, 2008, 48, 54-61.	2.1	34