
Nobuyuki Takei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ECF Downregulates Presynaptic Maturation and Suppresses Synapse Formation In Vitro and In Vivo. Neurochemical Research, 2022, , 1.	1.6	1
2	Familial idiopathic basal ganglia calcification with a heterozygous missense variant (c. <scp>902C</scp> >T/p. <scp>P307L</scp>) in <scp><i>SLC20A2</i></scp> showing widespread cerebrovascular lesions. Neuropathology, 2022, 42, 126-133.	0.7	2
3	Novel Repositioning Therapy for Drug-Resistant Glioblastoma: In Vivo Validation Study of Clindamycin Treatment Targeting the mTOR Pathway and Combination Therapy with Temozolomide. Cancers, 2022, 14, 770.	1.7	2
4	Postsynaptic structure formation of human iPS cell-derived neurons takes longer than presynaptic formation during neural differentiation in vitro. Molecular Brain, 2021, 14, 149.	1.3	10
5	RalA, PLD and mTORC1 Are Required for Kinase-Independent Pathways in DGKβ-Induced Neurite Outgrowth. Biomolecules, 2021, 11, 1814.	1.8	0
6	mTORC1 is involved in DGKβ-induced neurite outgrowth and spinogenesis. Neurochemistry International, 2020, 134, 104645.	1.9	5
7	AMPK activation, eEF2 inactivation, and reduced protein synthesis in the cerebral cortex of hibernating chipmunks. Scientific Reports, 2019, 9, 11904.	1.6	11
8	BDNF Reduces eEF2 Phosphorylation and Enhances Novel Protein Synthesis in the Growth Cones of Dorsal Root Ganglia Neurons. Neurochemical Research, 2018, 43, 1242-1249.	1.6	7
9	Advanced glycation end products induce brain-derived neurotrophic factor release from human platelets through the Src-family kinase activation. Cardiovascular Diabetology, 2017, 16, 20.	2.7	11
10	Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS ONE, 2017, 12, e0174780.	1.1	20
11	Somatic Mutations in the <scp><i>MTOR</i></scp> gene cause focal cortical dysplasia type <scp>ll</scp> b. Annals of Neurology, 2015, 78, 375-386.	2.8	169
12	Neuropathologic Implication of Peripheral Neuregulin-1 and EGF Signals in Dopaminergic Dysfunction and Behavioral Deficits Relevant to Schizophrenia: Their Target Cells and Time Window. BioMed Research International, 2014, 2014, 1-12.	0.9	28
13	A possible link between BDNF and mTOR in control of food intake. Frontiers in Psychology, 2014, 5, 1093.	1.1	46
14	mTOR signaling and its roles in normal and abnormal brain development. Frontiers in Molecular Neuroscience, 2014, 7, 28.	1.4	239
15	AMPâ€activated protein kinase counteracts brainâ€derived neurotrophic factorâ€induced mammalian target of rapamycin complex 1 signaling in neurons. Journal of Neurochemistry, 2013, 127, 66-77.	2.1	43
16	Periventricular nodular heterotopia functionally couples with the overlying hippocampus. Epilepsia, 2012, 53, e127-31.	2.6	21
17	Qualitative and quantitative reâ€evaluation of epidermal growth factorâ€ErbB1 action on developing midbrain dopaminergic neurons <i>in vivo</i> and <i>in vitro</i> targetâ€derived neurotrophic signaling (Part 1). Journal of Neurochemistry, 2011, 118, 45-56.	2.1	31
18	Activation of mammalian target of rapamycin signaling in spatial learning. Neuroscience Research, 2010, 68, 88-93.	1.0	35

Νοβυγυκι Τάκει

#	Article	IF	CITATIONS
19	Brain-derived Neurotrophic Factor Enhances the Basal Rate of Protein Synthesis by Increasing Active Eukaryotic Elongation Factor 2 Levels and Promoting Translation Elongation in Cortical Neurons. Journal of Biological Chemistry, 2009, 284, 26340-26348.	1.6	47
20	Cyclooxygenase-2 plays a critical role in retinal ganglion cell death after transient ischemia: Real-time monitoring of RGC survival using Thy-1-EGFP transgenic mice. Neuroscience Research, 2009, 65, 319-325.	1.0	12
21	Leucine induces phosphorylation and activation of p70S6K in cortical neurons via the system L amino acid transporter. Journal of Neurochemistry, 2008, 106, 934-942.	2.1	33
22	脳ã«ãĚãʿã,<神çμŒæ"é Š å>åã®å∫ã∙ Kagaku To Seibutsu, 2008, 46, 24-31.	0.0	0
23	In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. European Journal of Neuroscience, 2007, 25, 380-390.	1.2	27
24	Transforming growth factor alpha attenuates the functional expression of AMPA receptors in cortical GABAergic neurons. Molecular and Cellular Neurosciences, 2006, 31, 628-641.	1.0	28
25	Enhancement of translation elongation in neurons by brain-derived neurotrophic factor: Implications for mammalian target of rapamycin signaling. Journal of Neurochemistry, 2005, 95, 1438-1445.	2.1	67
26	Distinct Influences of Neonatal Epidermal Growth Factor Challenge on Adult Neurobehavioral Traits in Four Mouse Strains. Behavior Genetics, 2005, 35, 615-629.	1.4	41
27	Müller Cells as a Source of Brain-derived Neurotrophic Factor in the Retina: Noradrenaline Upregulates Brain-derived Neurotrophic Factor Levels in Cultured Rat Müller Cells. Neurochemical Research, 2005, 30, 1163-1170.	1.6	89
28	Brain-Derived Neurotrophic Factor Induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites. Journal of Neuroscience, 2004, 24, 9760-9769.	1.7	407
29	Involvement of Brain-Derived Neurotrophic Factor in Early Retinal Neuropathy of Streptozotocin-Induced Diabetes in Rats: Therapeutic Potential of Brain-Derived Neurotrophic Factor for Dopaminergic Amacrine Cells. Diabetes, 2004, 53, 2412-2419.	0.3	173
30	Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons. Developmental Biology, 2003, 263, 216-230.	0.9	57
31	PACAP and NGF cooperatively enhance choline acetyltransferase activity in postnatal basal forebrain neurons by complementary induction of its different mRNA species. Biochemical and Biophysical Research Communications, 2003, 301, 344-349.	1.0	12
32	Developmental changes of eukaryotic initiation factor 2B subunits in rat hippocampus. Neuroscience Letters, 2003, 346, 117-119.	1.0	4
33	Cellular and subcellular distributions of translation initiation, elongation and release factors in rat hippocampus. Molecular Brain Research, 2003, 111, 165-174.	2.5	14
34	BDNF is Upregulated by Postnatal Development and Visual Experience: Quantitative and Immunohistochemical Analyses of BDNF in the Rat Retina. , 2003, 44, 3211.		99
35	Brain-derived Neurotrophic Factor Regulates Surface Expression of α-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic Acid Receptors by Enhancing the N-Ethylmaleimide-sensitive Factor/GluR2 Interaction in Developing Neocortical Neurons. Journal of Biological Chemistry, 2002, 277, 40901-40910.	1.6	92
36	Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: An essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology, 2002, 43, 1173-1179.	2.0	230

Νοβυγυκι Τάκει

#	Article	IF	CITATIONS
37	Establishment of a novel enzyme-linked immunosorbant assay for Thy-1; quantitative assessment of neuronal degeneration. Neuroscience Letters, 2002, 329, 185-188.	1.0	26
38	BDNF as an anterophin; a novel neurotrophic relationship between brain neurons. Trends in Neurosciences, 2001, 24, 683-684.	4.2	53
39	Biological characterization and optical imaging of brain-derived neurotrophic factor-green fluorescent protein suggest an activity-dependent local release of brain-derived neurotrophic factor in neurites of cultured hippocampal neurons. Journal of Neuroscience Research, 2001, 64, 1-10.	1.3	120
40	PACAP has a neurotrophic effect on cultured basal forebrain cholinergic neurons from adult rats. Developmental Brain Research, 2001, 131, 41-45.	2.1	9
41	Brain-derived Neurotrophic Factor Enhances Neuronal Translation by Activating Multiple Initiation Processes. Journal of Biological Chemistry, 2001, 276, 42818-42825.	1.6	185
42	Pituitary adenylate cyclase-activating polypeptide promotes the survival of basal forebrain cholinergic neurons in vitro and in vivo: comparison with effects of nerve growth factor. European Journal of Neuroscience, 2000, 12, 2273-2280.	1.2	52
43	Expression of c-Met in developing rat hippocampus: evidence for HGF as a neurotrophic factor for calbindin D-expressing neurons. European Journal of Neuroscience, 2000, 12, 3453-3461.	1.2	58
44	Regulation of Nerve Growth Factor Release by Nitric Oxide through Cyclic GMP Pathway in Cortical Glial Cells. Molecular Pharmacology, 1999, 56, 339-347.	1.0	33
45	Distribution of pituitary adenylate cyclase activating polypeptide mRNA in the developing rat brain. Molecular Brain Research, 1999, 65, 1-13.	2.5	85
46	BDNF and NT-3 but not CNTF counteract the Ca2+ ionophore-induced apoptosis of cultured cortical neurons: involvement of dual pathways. Neuropharmacology, 1999, 38, 283-288.	2.0	26
47	Developmental Regulation of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Its Receptor 1 in Rat Brain: Function of PACAP as a Neurotrophic Factora. Annals of the New York Academy of Sciences, 1998, 865, 189-196.	1.8	44
48	Pituitary adenylate cyclase-activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induces calcitonin gene-related peptide (CGRP) immunoreactivity in vitro. , 1998, 51, 243-256.		57
49	Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (pACAP) on mesencephalic dopaminergic neurons. Journal of Neuroscience Research, 1998, 54, 698-706.	1.3	87
50	Brain-derived Neurotrophic Factor Induces Rapid and Transient Release of Glutamate through the Non-exocytotic Pathway from Cortical Neurons. Journal of Biological Chemistry, 1998, 273, 27620-27624.	1.6	79
51	Pituitary adenylate cyclaseâ€activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induces calcitonin geneâ€related peptide (CGRP) immunoreactivity in vitro. Journal of Neuroscience Research, 1998, 51, 243-256.	1.3	1
52	Involvement of phosphatidylinositol-3 kinase in prevention of low K+-induced apoptosis of cerebellar granule neurons. Developmental Brain Research, 1997, 101, 197-206.	2.1	61
53	Brainâ€Derived Neurotrophic Factor Increases the Stimulationâ€Evoked Release of Glutamate and the Levels of Exocytosisâ€Associated Proteins in Cultured Cortical Neurons from Embryonic Rats. Journal of Neurochemistry, 1997, 68, 370-375.	2.1	141
54	BDNF increases the expression of neuropeptide Y mRNA and promotes differentiation/maturation of neuropeptide Y-positive cultured cortical neurons from embryonic and postnatal rats. Molecular Brain Research, 1996, 37, 283-289.	2.5	31

Νοβυγυκι Τάκει

#	Article	IF	CITATIONS
55	A Role of Peroxides in Ca2+Ionophore-Induced Apoptosis in Cultured Rat Cortical Neurons. Biochemical and Biophysical Research Communications, 1996, 227, 513-518.	1.0	18
56	Basic fibroblast growth factor inhibited Ca2+ ionophore-induced apoptotic cell death of cultured cortical neurons from embryonic rats. Neuroscience Letters, 1995, 192, 124-126.	1.0	15
57	Ca2+ ionophore-induced apoptosis on cultured embryonic rat cortical neurons. Brain Research, 1994, 652, 65-70.	1.1	94
58	Nerve Growth Factor Increases the Intracellular Content of Acetylcholine in Cultured Septal Neurons from Developing Rats. Journal of Neurochemistry, 1988, 51, 1118-1125.	2.1	46