
Thomas Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326048/publications.pdf Version: 2024-02-01

THOMAS SCHDEIRED

#	Article	IF	CITATIONS
1	500â€W rod-type 4 × 4 multicore ultrafast fiber laser. Optics Letters, 2022, 47, 345.	3.3	15
2	High-energy Q-switched 16-core tapered rod-type fiber laser system. Optics Letters, 2022, 47, 1725.	3.3	10
3	Laser cooling experiments to measure the quantum efficiency of Yb-doped silica fibers. Optics Letters, 2022, 47, 3608.	3.3	6
4	Commissioning of a Highly Customized 1010 nm, ns-Pulsed, Yb-Doped Fiber Amplifier for On-Demand Single-Photon Generation. , 2021, , .		0
5	Transverse Mode Instability Threshold Manipulation in a Core-Pumped Raman Amplifier. , 2021, , .		0
6	Continuous-wave cascaded second Stokes diamond Raman laser at 1477  nm. Optics Letters, 2021, 46,	13.333.	4
7	Implementation of Laser-Induced Anti-Stokes Fluorescence Power Cooling of Ytterbium-Doped Silica Glass. ACS Omega, 2021, 6, 8376-8381.	3.5	19
8	Experimental analysis of Raman-induced transverse mode instability in a core-pumped Raman fiber amplifier. Optics Express, 2021, 29, 16175.	3.4	13
9	Monitoring data-driven Reinforcement Learning controller training: A comparative study of different training strategies for a real-world energy system. Energy and Buildings, 2021, 239, 110856.	6.7	12
10	Simplified, athermal fiber designs for high power laser applications. , 2021, , .		2
11	Q-Switched Rod-Type Multicore Fibre Laser Delivering 3.1 mJ Pulses. , 2021, , .		0
12	1 kW average power emission from an in-house 4x4 multicore rod-type fiber. , 2021, , .		2
13	Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system. Energy, 2021, 230, 120894.	8.8	12
14	Laser cooling of ytterbium-doped silica glass by more than 6 Kelvin. , 2021, , .		0
15	Application of two promising Reinforcement Learning algorithms for load shifting in a cooling supply system. Energy and Buildings, 2020, 229, 110490.	6.7	40
16	Laser cooling of ytterbium-doped silica glass. Communications Physics, 2020, 3, .	5.3	21
17	Quantum-limited measurements of intensity noise levels in Yb-doped fiber amplifiers. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	3

18 Observation of anti-Stokes fluorescence cooling of ytterbium-doped silica glass (Conference) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 62 T

THOMAS SCHREIBER

#	Article	IF	CITATIONS
19	Highly customized 1010 nm, ns-pulsed Yb-doped fiber amplifier as a key tool for on-demand single-photon generation. Optics Express, 2020, 28, 17362.	3.4	6
20	Transverse mode instability in a passive fiber induced by stimulated Raman scattering. Optics Express, 2020, 28, 22819.	3.4	19
21	Diamond Raman oscillator operating at 1178  nm. Optics Letters, 2020, 45, 2898.	3.3	11
22	Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5  kW output power. Optics Letters, 2020, 45, 1447.	3.3	41
23	High Power 2nd Stokes Diamond Raman Optical Frequency Conversion. , 2019, , .		0
24	Multi-kW performance analysis of Yb-doped monolithic single-mode amplifier and oscillator setup. , 2019, , .		10
25	High-power fiber laser materials: influence of fabrication methods and codopants on optical properties. , 2019, , .		6
26	Femtosecond written fiber Bragg gratings in ytterbium-doped fibers for fiber lasers in the kilowatt regime. Optics Letters, 2019, 44, 723.	3.3	22
27	Ring-up-doped fiber for the generation of more than 600  W single-mode narrow-band output at 1018 Optics Letters, 2019, 44, 2502.	ậ€‰	nm ₁₃
28	High power 2nd Stokes diamond Raman optical frequency conversion. , 2019, , .		0
29	Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers. Optics Letters, 2018, 43, 1291.	3.3	58
30	Quantum Limits of Coherent Beam Combining. , 2018, , .		0
31	High power 1st and 2nd Stokes diamond Raman frequency conversion. , 2018, , .		0
32	Active materials for high-power fiber lasers prepared by all-solution doping technique. , 2018, , .		1
33	Fabrication of longitudinally arbitrary shaped fiber tapers. , 2018, , .		1
34	High-power single-pass pumped diamond Raman oscillator. , 2018, , .		0
35	High-power single-pass pumped diamond Raman oscillator. , 2018, , .		0
36	High-power single-pass pumped diamond Raman laser. , 2017, , .		0

High-power single-pass pumped diamond Raman laser. , 2017, , . 36

THOMAS SCHREIBER

#	Article	IF	CITATIONS
37	Optical heterodyne detection for spectral characterization of few longitudinal mode fiber lasers. , 2017, , .		0
38	High power sub-ps pulse generation by compression of a frequency comb obtained by a nonlinear broadened two colored seed. Optics Express, 2017, 25, 16476.	3.4	6
39	Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities. Optics Letters, 2017, 42, 4311.	3.3	21
40	TMI investigations of very low NA Yb-doped fibers and scaling to extreme stable 4.4 kW single-mode output. , 2017, , .		3
41	Detailed investigations on thermal mode instabilities in LMA Yb-doped fibers. , 2017, , .		1
42	Monolithic thulium fiber laser with 567  W output power at 1970  nm. Optics Letters, 2016, 41	., 26 32.	42
43	Scalability of components for kW-level average power few-cycle lasers. Applied Optics, 2016, 55, 1636.	2.1	41
44	Efficient Raman frequency conversion of highâ€power fiber lasers in diamond. Laser and Photonics Reviews, 2015, 9, 405-411.	8.7	89
45	High-Brightness Incoherent Combination of Fiber Lasers in 7 × 1 Fiber Couplers at Average Powers > 5 kW. Journal of Lightwave Technology, 2015, 33, 4297-4302.	4.6	13
46	Optimizing mode instability in low-NA fibers by passive strategies. Optics Letters, 2015, 40, 2317.	3.3	26
47	Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization. Optics Express, 2015, 23, 19586.	3.4	33
48	Optimization of a Diode-Pumped Thulium Fiber Laser with a Monolithic Cavity towards 278 W at 1967 nm. , 2015, , .		3
49	All-Solution Doping Technique for Tailoring Core Composition toward Yb:AlPO4:SiO2. , 2015, , .		4
50	A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities. Light: Science and Applications, 2014, 3, e211-e211.	16.6	37
51	Build up and decay of mode instability in a high power fiber amplifier. Optics Express, 2012, 20, 13274.	3.4	64
52	Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Optics Express, 2011, 19, 13218.	3.4	541
53	High-power tandem pumped fiber amplifier with an output power of 29 kW. Optics Letters, 2011, 36, 3061.	3.3	72
54	High average power spectral beam combining of four fiber amplifiers to 82 kW. Optics Letters, 2011, 36, 3118.	3.3	168

THOMAS SCHREIBER

#	Article	IF	CITATIONS
55	High-power linear-polarized narrow linewidth photonic crystal fiber amplifier. Proceedings of SPIE, 2010, , .	0.8	17
56	Fiber lasers and amplifiers: an ultrafast performance evolution. Applied Optics, 2010, 49, F71.	2.1	140
57	Monolithic all-glass pump combiner scheme for high-power fiber laser systems. Optics Express, 2010, 18, 13194.	3.4	28
58	Femtosecond fiber CPA system emitting 830 W average output power. Optics Letters, 2010, 35, 94.	3.3	553
59	High-energy femtosecond photonic crystal fiber laser. Optics Letters, 2010, 35, 3156.	3.3	55
60	A 325-W-Average-Power Fiber CPA System Delivering Sub-400 fs Pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 187-190.	2.9	26
61	Incoherent Beam Combining of Continuous-Wave and Pulsed Yb-Doped Fiber Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 354-360.	2.9	17
62	Optoelectronic packaging based on laser joining. Proceedings of SPIE, 2008, , .	0.8	4
63	On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations. Optics Express, 2007, 15, 8252.	3.4	98
64	The Rising Power of Fiber Lasers and Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 537-545.	2.9	195
65	Microjoule-level all-polarization-maintaining femtosecond fiber source. Optics Letters, 2006, 31, 574.	3.3	56
66	Nonlinear refractive index of fs-laser-written waveguides in fused silica. Optics Express, 2006, 14, 2151.	3.4	125
67	Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. Optics Express, 2005, 13, 10552.	3.4	144
68	NONPARAMETRIC DETECTION OF DEPENDENCES IN STOCHASTIC POINT PROCESSES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 1987-1993.	1.7	4
69	Nonlinear noise reduction using reference data. Physical Review E, 2001, 63, 036209.	2.1	14
70	Surrogate time series. Physica D: Nonlinear Phenomena, 2000, 142, 346-382.	2.8	1,399
71	IS NONLINEARITY EVIDENT IN TIME SERIES OF BRAIN ELECTRICAL ACTIVITY?. , 2000, , .		8

72 SURROGATE DATA FOR NONâ€"STATIONARY SIGNALS. , 2000, , .

3

#	Article	IF	CITATIONS
73	FAST NONLINEAR PROJECTIVE FILTERING IN A DATA STREAM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 2039-2045.	1.7	20
74	Microscopic chaos from brownian motion?. Nature, 1999, 401, 875-876.	27.8	29
75	Nonlinear noise reduction for electrocardiograms. Chaos, 1996, 6, 87-92.	2.5	77
76	Noise in chaotic data: Diagnosis and treatment. Chaos, 1995, 5, 133-142.	2.5	55
77	On noise reduction methods for chaotic data. Chaos, 1993, 3, 127-141.	2.5	240
78	NONLINEAR TIME SEQUENCE ANALYSIS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1991, 01, 521-547.	1.7	465