
Apurba Kumar Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect and Optimization of Various Machine Process Parameters on the Surface Roughness in EDM for an EN41 Material Using Grey-Taguchi. , 2014, 6, 383-390.		37
2	Design analysis of Mixed Flow Pump Impeller Blades Using ANSYS and Prediction of its Parameters using Artificial Neural Network. Procedia Engineering, 2014, 97, 2022-2031.	1.2	14
3	Design of a Mixed Flow Pump Impeller Blade and its Validation Using Stress Analysis. , 2014, 6, 417-424.		12
4	Design of a Mixed Flow Pump Impeller and its Validation Using FEM Analysis. Procedia Technology, 2014, 14, 181-187.	1.1	8
5	Effect and Optimization of Various Machine Process Parameters on the Surface Roughness in EDM for an EN19 Material Using Response Surface Methodology. , 2014, 5, 1702-1709.		7
6	Material Selection for Blades of Mixed Flow Pump Impeller Using ANSYS. Materials Today: Proceedings, 2015, 2, 2022-2029.	1.8	6
7	Design and Optimization of Mixed Flow Pump Impeller Blades – A Review. Materials Today: Proceedings, 2018, 5, 4460-4466.	1.8	5
8	Material Analysis for Blade of a Mixed Flow Pump Impeller Designed Through Mean Stream Line Method. Materials Today: Proceedings, 2017, 4, 1580-1589.	1.8	3
9	Design and optimization of mixed flow pump impeller blades by varying semi-cone angle. IOP Conference Series: Materials Science and Engineering, 2018, 330, 012095.	0.6	3
10	Vibration Analysis of Mixed Flow Pump Impeller Blade Designed Using Mean Stream Line Method. Applied Mechanics and Materials, 2016, 852, 476-482.	0.2	2
11	Comparison of Stresses in Blade of a Mixed Flow Pump Impeller Designed Using Mean Stream Line Method and Free Vortex Method. Materials Today: Proceedings, 2017, 4, 9333-9340.	1.8	2
12	Design validation & stress analysis of mixed flow pump impeller blades under applied uniformly distributed and uniformly varying loads Materials Today: Proceedings, 2018, 5, 4646-4652.	1.8	2
13	Design and Optimization of Mixed Flow Pump Impeller Blades with Hydrostatic Loading and Varying Semi-Cone Angle. Materials Today: Proceedings, 2018, 5, 11608-11615.	1.8	2
14	Influence of Submerged Entry Nozzle Port Blockage on the Meniscus Fluctuation Considering Various Operational Parameters. Metals, 2020, 10, 269.	2.3	2
15	Application of Renewable Energy System With Fuzzy Logic. Advances in Mechatronics and Mechanical Engineering, 2019, , 284-309.	1.0	2
16	Python assisted numerical analysis of heat conduction for an orthotropic material. Advances in Materials and Processing Technologies, 2022, 8, 2014-2028.	1.4	2
17	Design of Blade of Mixed Flow Pump Impeller Using Mean Stream Line Method. Procedia Technology, 2016, 23, 464-471.	1.1	1
18	Forced convection heat transfer in a twin cylinder system under static condition using computational approach. AIP Conference Proceedings, 2019, , .	0.4	1

Apurba Kumar Roy

#	Article	IF	CITATIONS
19	Analysis of Different Mould Section Sizes to Optimize the Submerged Entry Nozzle to Measure the Meniscus Fluctuation in a Continuous Casting Mould. Crystals, 2021, 11, 564.	2.2	1
20	Optimization of Process Parameters in Plasma Arc Cutting Applying Genetic Algorithm and Fuzzy Logic. Advances in Mechatronics and Mechanical Engineering, 2018, , 123-139.	1.0	1
21	Design of Mixed Flow Pump Impeller Blade using Mean Stream Line Theory and its Analysis. Scientia Iranica, 2018, .	0.4	1
22	Strategic Designing and Optimization of Mixed Flow Impeller Blades for Maritime Applications. Advances in Logistics, Operations, and Management Science Book Series, 2016, , 470-508.	0.4	0
23	Design of Impeller Blade of Mixed Flow Pump. Advances in Mechatronics and Mechanical Engineering, 2018, , 37-66.	1.0	0
24	Fuzzy Logic Approach for Material Selection in Mechanical Engineering Design. Advances in Mechatronics and Mechanical Engineering, 2019, , 99-116.	1.0	0
25	Fuzzy Logic for Machining Applications. Advances in Mechatronics and Mechanical Engineering, 2019, , 341-361.	1.0	0