Warren H Meck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5324886/publications.pdf Version: 2024-02-01

		7096	7745
181	24,587	78	150
papers	citations	h-index	g-index
101	101	101	7254
191	191	191	7354
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. Timing and Time Perception, 2022, 11, 124-166.	0.6	5
2	Bidirectional role of microtubule dynamics in the acquisition and maintenance of temporal information in dorsolateral striatum. Neurobiology of Learning and Memory, 2021, 183, 107468.	1.9	5
3	Mediodorsal Thalamus Contributes to the Timing of Instrumental Actions. Journal of Neuroscience, 2020, 40, 6379-6388.	3.6	12
4	A systematic exploration of temporal bisection models across sub- and supra-second duration ranges. Journal of Mathematical Psychology, 2020, 94, 102311.	1.8	4
5	Daily and seasonal fluctuation in Tawny Owl vocalization timing. PLoS ONE, 2020, 15, e0231591.	2.5	6
6	Student Learning Dispositions: Multidimensional Profiles Highlight Important Differences among Undergraduate STEM Honors Thesis Writers. CBE Life Sciences Education, 2019, 18, ar28.	2.3	5
7	Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. Cerebellum, 2019, 18, 266-286.	2.5	101
8	Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Frontiers in Molecular Neuroscience, 2019, 12, 321.	2.9	4
9	Integrating Models of Interval Timing and Reinforcement Learning. Trends in Cognitive Sciences, 2018, 22, 911-922.	7.8	45
10	Oscillation patterns of local field potentials in the dorsal striatum and sensorimotor cortex during the encoding, maintenance, and decision stages for the ordinal comparison of sub- and supra-second signal durations. Neurobiology of Learning and Memory, 2018, 153, 79-91.	1.9	15
11	Spatial Memory Structure and Capacity: Influences on Problem-Solving and Memory-Coding Strategies. , 2018, , 155-183.		7
12	The persistence of memory: how the brain encodes time in memory. Current Opinion in Behavioral Sciences, 2017, 17, 178-185.	3.9	24
13	Nigrotectal Stimulation Stops Interval Timing in Mice. Current Biology, 2017, 27, 3763-3770.e3.	3.9	48
14	Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy. Frontiers in Aging Neuroscience, 2016, 8, 102.	3.4	74
15	A Brief History of "The Psychology of Time Perception― Timing and Time Perception, 2016, 4, 299-314.	0.6	4
16	Continuous Social Defeat Induces Depression-Like Symptoms Including Anhedonia and Slowed Time Perception that are Rapidly Reversed by Ketamine. Timing and Time Perception, 2016, 4, 371-397.	0.6	2
17	Discriminative Fear Learners are Resilient to Temporal Distortions during Threat Anticipation. Timing and Time Perception, 2016, 4, 63-78.	0.6	18
18	Editorial overview: Time in perception and action. Current Opinion in Behavioral Sciences, 2016, 8, vi-x.	3.9	19

#	Article	IF	CITATIONS
19	The Socio-Temporal Brain: Connecting People in Time. Trends in Cognitive Sciences, 2016, 20, 760-772.	7.8	66
20	Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neuroscience and Biobehavioral Reviews, 2016, 71, 739-755.	6.1	79
21	Clock Speed as a Window into Dopaminergic Control of Emotion and Time Perception. Timing and Time Perception, 2016, 4, 99-122.	0.6	49
22	Claustrum, consciousness, and time perception. Current Opinion in Behavioral Sciences, 2016, 8, 258-267.	3.9	23
23	Cerebellar, hippocampal, and striatal time cells. Current Opinion in Behavioral Sciences, 2016, 8, 186-192.	3.9	39
24	Emotional modulation of interval timing and time perception. Neuroscience and Biobehavioral Reviews, 2016, 64, 403-420.	6.1	137
25	Temporal cognition: Connecting subjective time to perception, attention, and memory Psychological Bulletin, 2016, 142, 865-907.	6.1	244
26	Analysis of Genetic and Non-Genetic Factors Influencing Timing and Time Perception. PLoS ONE, 2015, 10, e0143873.	2.5	36
27	Impact of Vestibular Lesions on Allocentric Navigation and Interval Timing: The Role of Self-Initiated Motion in Spatial-Temporal Integration. Timing and Time Perception, 2015, 3, 269-305.	0.6	17
28	Oscillatory multiplexing of neural population codes for interval timing and working memory. Neuroscience and Biobehavioral Reviews, 2015, 48, 160-185.	6.1	132
29	Subjective Duration as a Signature of Coding Efficiency: Emerging Links Among Stimulus Repetition, Predictive Coding, and Cortical GABA Levels. Timing & Time Perception Reviews, 2014, 1, 1-12.	1.4	40
30	Ordinal judgments in the rat: An understanding of longer and shorter for suprasecond, but not subsecond, durations Journal of Experimental Psychology: General, 2014, 143, 710-720.	2.1	19
31	Retrospective and Prospective Views on the Role of theÂHippocampus in Interval Timing and Memory for ElapsedÂTime. Timing and Time Perception, 2014, 2, 51-61.	0.6	46
32	Towards an integrated understanding of the biology of timing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120470.	4.0	23
33	Time perception: the bad news and the good. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 429-446.	2.8	129
34	Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having <i>ĺ´</i> -opioid receptor gene deletion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120466.	4.0	64
35	Dedicated Clock/Timing-Circuit Theories of Time Perception and Timed Performance. Advances in Experimental Medicine and Biology, 2014, 829, 75-99.	1.6	88
36	Hear it playing low and slow: How pitch level differentially influences time perception. Acta Psychologica, 2014, 149, 169-177.	1.5	25

#	Article	IF	CITATIONS
37	Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annual Review of Psychology, 2014, 65, 743-771.	17.7	309
38	Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behavioural Processes, 2014, 101, 123-134.	1.1	30
39	Timing & Time Perception Reviews: Opening the Door to Theoretical Discussions of Consciousness, Decision-Making, Multisensory Processing, Time Cells and Memory Mapping … to Name But a Few Issues of Relevance to Temporal Cognition. Timing & Time Perception Reviews, 2014, 1, 1-4.	1.4	3
40	Timing Behavior. , 2014, , 1-6.		0
41	Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia, 2013, 51, 284-292.	1.6	110
42	Bayesian optimization of time perception. Trends in Cognitive Sciences, 2013, 17, 556-564.	7.8	227
43	Neural Basis of the Perception and Estimation of Time. Annual Review of Neuroscience, 2013, 36, 313-336.	10.7	597
44	Hippocampus, time, and memory Behavioral Neuroscience, 2013, 127, 655-668.	1.2	308
45	Timing & amp; Time Perception Enters a New Dimension. Timing and Time Perception, 2013, 1, 1-2.	0.6	14
46	Hippocampus, time, and memory—A retrospective analysis Behavioral Neuroscience, 2013, 127, 642-654.	1.2	83
47	Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 2012, 62, 1221-1229.	4.1	70
48	Acquisition of "Start―and "Stop―response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Frontiers in Integrative Neuroscience, 2012, 6, 10.	2.1	55
49	Interval Timing and Time-Based Decision Making. Frontiers in Integrative Neuroscience, 2012, 6, 13.	2.1	26
50	Pathophysiological distortions in time perception and timed performance. Brain, 2012, 135, 656-677.	7.6	380
51	Distinct neural ensembles in the rat gustatory cortex encode salt and water tastes. Journal of Physiology, 2012, 590, 3169-3184.	2.9	17
52	Neuroanatomical and Neurochemical Substrates of Timing. Neuropsychopharmacology, 2011, 36, 3-25.	5.4	649
53	Modality differences in timing and temporal memory throughout the lifespan. Brain and Cognition, 2011, 77, 298-303.	1.8	63
54	Rapid and Acute Effects of Estrogen on Time Perception in Male and Female Rats. Frontiers in Integrative Neuroscience, 2011, 5, 63.	2.1	18

#	Article	IF	CITATIONS
55	Unwinding the Molecular Basis of Interval and Circadian Timing. Frontiers in Integrative Neuroscience, 2011, 5, 64.	2.1	64
56	Contingent negative variation and its relation to time estimation: a theoretical evaluation. Frontiers in Integrative Neuroscience, 2011, 5, 91.	2.1	127
57	Categorical scaling of duration as a function of temporal context in aged rats. Brain Research, 2011, 1381, 175-186.	2.2	21
58	Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Research, 2011, 1383, 187-195.	2.2	37
59	New Perspectives on Vierordt's Law: Memory-Mixing in Ordinal Temporal Comparison Tasks. Lecture Notes in Computer Science, 2011, , 67-78.	1.3	40
60	Developmental neuroscience of time and number: implications for autism and other neurodevelopmental disabilities. Frontiers in Integrative Neuroscience, 2011, 6, 7.	2.1	65
61	Timing Deficits in Aging and Neuropathology. , 2009, , 1-41.		44
62	Relative time sharing: new findings and an extension of the resource allocation model of temporal processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1875-1885.	4.0	129
63	Expectancy in humans in multisecond peak-interval timing with gaps. Attention, Perception, and Psychophysics, 2009, 71, 789-802.	1.3	32
64	Taste-Guided Decisions Differentially Engage Neuronal Ensembles across Gustatory Cortices. Journal of Neuroscience, 2009, 29, 11271-11282.	3.6	12
65	Relativity Theory and Time Perception: Single or Multiple Clocks?. PLoS ONE, 2009, 4, e6268.	2.5	89
66	Prenatal-choline supplementation differentially modulates timing of auditory and visual stimuli in aged rats. Brain Research, 2008, 1237, 167-175.	2.2	35
67	Prenatal choline supplementation increases sensitivity to contextual processing of temporal information. Brain Research, 2008, 1237, 204-213.	2.2	18
68	Spatial memory and hippocampal plasticity are differentially sensitive to the availability of choline in adulthood as a function of choline supply in utero. Brain Research, 2008, 1237, 153-166.	2.2	63
69	Oscillatory bands, neuronal synchrony and hippocampal function: Implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation. Brain Research, 2008, 1237, 176-194.	2.2	19
70	Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 2008, 18, 145-152.	4.2	330
71	Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learning and Memory, 2008, 15, 153-162.	1.3	61

72 Categorical Scaling of Duration Bisection in Pigeons (<i>Columba livia</i>), Mice (<i>Mus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (

#	Article	IF	CITATIONS
73	How music fills our emotions and helps us keep time. Behavioral and Brain Sciences, 2008, 31, 575-576.	0.7	46
74	Electrophysiological Measures of Time Processing in Infant and Adult Brains: Weber's Law Holds. Journal of Cognitive Neuroscience, 2008, 20, 193-203.	2.3	85
75	Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats. Learning and Memory, 2008, 15, 866-875.	1.3	16
76	Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Frontiers in Integrative Neuroscience, 2008, 1, 7.	2.1	109
77	"Speed―Warps Time: Methamphetamines Interactive Roles in Drug Abuse, Habit Formation, and the Biological Clocks of Circadian and Interval Timing. Current Drug Abuse Reviews, 2008, 1, 203-212.	3.4	44
78	Common Representations of Abstract Quantities. Current Directions in Psychological Science, 2007, 16, 156-161.	5.3	69
79	Amygdala inactivation reverses fear's ability to impair divided attention and make time stand still Behavioral Neuroscience, 2007, 121, 707-720.	1.2	65
80	How emotions colour our perception of time. Trends in Cognitive Sciences, 2007, 11, 504-513.	7.8	574
81	Ketamine "unlocks―the reduced clock-speed effects of cocaine following extended training: Evidence for dopamine–glutamate interactions in timing and time perception. Neurobiology of Learning and Memory, 2007, 88, 149-159.	1.9	88
82	Combined organizational and activational effects of short and long photoperiods on spatial and temporal memory in rats. Behavioural Processes, 2007, 74, 226-233.	1.1	19
83	Sensory modality and time perception in children and adults. Behavioural Processes, 2007, 74, 244-250.	1.1	139
84	Effect of clozapine on interval timing and working memory for time in the peak-interval procedure with gaps. Behavioural Processes, 2007, 74, 159-167.	1.1	37
85	Acute Ethanol Potentiates the Clockâ€Speed Enhancing Effects of Nicotine on Timing and Temporal Memory. Alcoholism: Clinical and Experimental Research, 2007, 31, 2106-2113.	2.4	21
86	Impairments in timing, temporal memory, and reversal learning linked to neurotoxic regimens of methamphetamine intoxication. Brain Research, 2007, 1186, 255-266.	2.2	40
87	Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Research, 2007, 1186, 242-254.	2.2	53
88	Habit formation and the loss of control of an internal clock: inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology, 2007, 193, 351-362.	3.1	66
89	Interaction of raclopride and preparatory interval effects on simple reaction time performance. Behavioural Brain Research, 2006, 175, 62-74.	2.2	44
90	Time sharing in rats: A peak-interval procedure with gaps and distracters. Behavioural Processes, 2006, 71, 107-115.	1.1	59

#	Article	IF	CITATIONS
91	Interval timing with gaps and distracters: Evaluation of the ambiguity, switch, and time-sharing hypotheses Journal of Experimental Psychology, 2006, 32, 329-338.	1.7	82
92	Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology, 2006, 188, 201-212.	3.1	154
93	Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 2006, 1109, 93-107.	2.2	309
94	Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Research, 2006, 1108, 157-167.	2.2	100
95	Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Research, 2006, 1108, 168-175.	2.2	48
96	Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacology Biochemistry and Behavior, 2006, 85, 114-122.	2.9	115
97	Â7 Nicotinic acetylcholine receptors and temporal memory: Synergistic effects of combining prenatal choline and nicotine on reinforcement-induced resetting of an interval clock. Learning and Memory, 2006, 13, 127-134.	1.3	38
98	Memory for Timing Visual and Auditory Signals in Albino and Pigmented Rats Journal of Experimental Psychology, 2005, 31, 18-30.	1.7	64
99	What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 2005, 6, 755-765.	10.2	1,711
100	Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology, 2005, 182, 232-244.	3.1	96
101	Not "just―a coincidence: Frontalâ€striatal interactions in working memory and interval timing. Memory, 2005, 13, 441-448.	1.7	153
102	Neuropsychology of timing and time perception. Brain and Cognition, 2005, 58, 1-8.	1.8	313
103	Chronic treatment with haloperidol induces deficits in working memory and feedback effects of interval timing. Brain and Cognition, 2005, 58, 9-16.	1.8	96
104	Interval-timing deficits in individuals at high risk for schizophrenia. Brain and Cognition, 2005, 58, 109-118.	1.8	116
105	Auditory/visual duration bisection in patients with left or right medial-temporal lobe resection. Brain and Cognition, 2005, 58, 119-124.	1.8	79
106	Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation. FASEB Journal, 2004, 18, 545-547.	0.5	110
107	Timing in the baby brain. Cognitive Brain Research, 2004, 21, 227-233.	3.0	83
108	Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research, 2004, 21, 139-170.	3.0	759

#	Article	IF	CITATIONS
109	Neuroimaging of interval timing. Cognitive Brain Research, 2004, 21, 133-137.	3.0	65
110	Frontal–striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Research, 2004, 21, 171-182.	3.0	144
111	Systems-level integration of interval timing and reaction time. Neuroscience and Biobehavioral Reviews, 2004, 28, 747-769.	6.1	134
112	Differential Modulation of Clock Speed by the Administration of Intermittent Versus Continuous Cocaine Behavioral Neuroscience, 2004, 118, 150-156.	1.2	141
113	Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neuroscience and Biobehavioral Reviews, 2003, 27, 385-399.	6.1	277
114	Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons Behavioral Neuroscience, 2003, 117, 760-773.	1.2	306
115	Integration of Behavior and Timing. Frontiers in Neuroscience, 2003, , .	0.0	7
116	Time Flies and May Also Sing. Frontiers in Neuroscience, 2003, , .	0.0	3
117	Afterword: Timing in the New Millennium. Frontiers in Neuroscience, 2003, , .	0.0	5
118	Temporal integration as a function of signal and gap intensity in rats (Rattus norvegicus) and pigeons (Columba livia) Journal of Comparative Psychology (Washington, D C: 1983), 2002, 116, 381-390.	0.5	63
119	Differential effects of methamphetamine and haloperidol on the control of an internal clock Behavioral Neuroscience, 2002, 116, 291-297.	1.2	201
120	Dissecting the Brain's Internal Clock: How Frontal–Striatal Circuitry Keeps Time and Shifts Attention. Brain and Cognition, 2002, 48, 195-211.	1.8	293
121	Choline Uptake in the Frontal Cortex Is Proportional to the Absolute Error of a Temporal Memory Translation Constant in Mature and Aged Rats. Learning and Motivation, 2002, 33, 88-104.	1.2	65
122	Distortions in the Content of Temporal Memory. , 2002, , 175-200.		15
123	Differential effects of methamphetamine and haloperidol on the control of an internal clock Behavioral Neuroscience, 2002, 116, 291-297.	1.2	124
124	Paying Attention to Time as one Gets Older. Psychological Science, 2001, 12, 478-484.	3.3	137
125	Timing for the absence of a stimulus: The gap paradigm reversed Journal of Experimental Psychology, 2000, 26, 305-322.	1.7	82
126	Neuropsychological mechanisms of interval timing behavior. BioEssays, 2000, 22, 94-103.	2.5	431

#	Article	IF	CITATIONS
127	Prenatal choline exposure alters hippocampal responsiveness to cholinergic stimulation in adulthood. Developmental Brain Research, 2000, 123, 25-32.	1.7	84
128	Differential effects of auditory and visual signals on clock speed and temporal memory Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 1770-1787.	0.9	273
129	Neuropsychological mechanisms of interval timing behavior. , 2000, 22, 94.		4
130	Prenatal Availability of Choline Alters the Development of Acetylcholinesterase in the Rat Hippocampus. Developmental Neuroscience, 1999, 21, 94-104.	2.0	66
131	Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Developmental Brain Research, 1999, 118, 159-167.	1.7	114
132	Choline supplementation during prenatal development reduces proactive interference in spatial memory. Developmental Brain Research, 1999, 118, 51-59.	1.7	170
133	Reinforcement-induced within-trial resetting of an internal clock. Behavioural Processes, 1999, 45, 159-171.	1.1	49
134	Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Research, 1998, 794, 225-238.	2.2	131
135	Transdermal nicotine effects on attention. Psychopharmacology, 1998, 140, 135-141.	3.1	319
136	Neuropharmacology of timing and time perception. Cognitive Brain Research, 1998, 6, 233.	3.0	15
137	Coupled Temporal Memories in Parkinson's Disease: A Dopamine-Related Dysfunction. Journal of Cognitive Neuroscience, 1998, 10, 316-331.	2.3	383
138	Scalar expectancy theory and peak-interval timing in humans Journal of Experimental Psychology, 1998, 24, 15-33.	1.7	254
139	Prenatal Dietary Choline Supplementation Decreases the Threshold for Induction of Long-Term Potentiation in Young Adult Rats. Journal of Neurophysiology, 1998, 79, 1790-1796.	1.8	155
140	Perinatal choline supplementation increases the threshold for chunking in spatial memory. NeuroReport, 1997, 8, 3053-3059.	1.2	142
141	Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. NeuroReport, 1997, 8, 3045-3051.	1.2	160
142	Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. NeuroReport, 1997, 8, 2831-2835.	1.2	173
143	Chapter 4 Application of a mode-control model of temporal integration to counting and timing behavior. Advances in Psychology, 1997, , 133-184.	0.1	18
144	Chapter 10 How time flies: Functional and neural mechanisms of interval timing. Advances in Psychology, 1997, , 409-457.	0.1	40

#	Article	IF	CITATIONS
145	The â€~internal clocks' of circadian and interval timing. Endeavour, 1997, 21, 3-8.	0.4	31
146	The â€~internal clocks' of circadian and interval timing (erratum). Endeavour, 1997, 21, 82-87.	0.4	58
147	Neuropharmacology of timing and time perception. Cognitive Brain Research, 1996, 3, 227-242.	3.0	806
148	Clonidine-induced antagonism of norepinephrine modulates the attentional processes involved in peak-interval timing Experimental and Clinical Psychopharmacology, 1996, 4, 82-92.	1.8	59
149	Increasing the speed of an internal clock: The effects of nicotine on interval timing. Drug Development Research, 1996, 38, 204-211.	2.9	21
150	Application of scalar timing theory to individual trials Journal of Experimental Psychology, 1994, 20, 135-155.	1.7	258
151	Repeated administration of pyrithiamine leads to a proportional increase in the remembered durations of events. Cognitive, Affective and Behavioral Neuroscience, 1992, 20, 39-46.	1.3	23
152	Modality-specific circadian rhythmicities influence mechanisms of attention and memory for interval timing. Learning and Motivation, 1991, 22, 153-179.	1.2	54
153	The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology, 1991, 16, 155-176.	2.7	413
154	Symmetrical and asymmetrical sources of variance in temporal generalization. Learning and Behavior, 1991, 19, 207-214.	3.4	94
155	Hierarchical structures: Chunking by food type facilitates spatial memory Journal of Experimental Psychology, 1990, 16, 69-84.	1.7	59
156	Organizational effects of early gonadal secretions on sexual differentiation in spatial memory Behavioral Neuroscience, 1990, 104, 84-97.	1.2	470
157	Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both Behavioral Neuroscience, 1989, 103, 1234-1241.	1.2	158
158	Pre―and postnatal choline supplementation produces longâ€ŧerm facilitation of spatial memory. Developmental Psychobiology, 1988, 21, 339-353.	1.6	241
159	Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia, 1988, 26, 307-318.	1.6	313
160	Hippocampal function is required for feedback control of an internal clock's criterion Behavioral Neuroscience, 1988, 102, 54-60.	1.2	132
161	Cholinergic modulation of the content of temporal memory Behavioral Neuroscience, 1987, 101, 457-464.	1.2	177
162	Nutrients that modify the speed of internal clock and memory storage processes Behavioral Neuroscience, 1987, 101, 465-475.	1.2	82

#	Article	IF	CITATIONS
163	Separation of hippocampal and amygdaloid involvement in temporal memory dysfunctions. Brain Research, 1987, 404, 180-188.	2.2	140
164	Vasopressin metabolite neuropeptide facilitates simultaneous temporal processing. Behavioural Brain Research, 1987, 23, 147-157.	2.2	46
165	Arginine vasopressin innoculates against age-related increases in sodium-dependent high affinity choline uptake and discrepancies in the content of temporal memory. European Journal of Pharmacology, 1986, 130, 327-331.	3.5	68
166	Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacology Biochemistry and Behavior, 1986, 25, 1185-1189.	2.9	241
167	Postreinforcement signal processing Journal of Experimental Psychology, 1985, 11, 52-70.	1.7	19
168	Hippocampus and "general―mnemonic function: Only time will tell. Behavioral and Brain Sciences, 1985, 8, 509-510.	0.7	6
169	Arginine Vasopressin Inoculates Against Age-Related Changes in Temporal Memory. Annals of the New York Academy of Sciences, 1985, 444, 453-456.	3.8	7
170	Temporal integration in duration and number discrimination Journal of Experimental Psychology, 1985, 11, 591-597.	1.7	130
171	Hippocampus, time, and memory Behavioral Neuroscience, 1984, 98, 3-22.	1.2	363
172	Scalar Timing in Memory. Annals of the New York Academy of Sciences, 1984, 423, 52-77.	3.8	1,370
173	Attentional Bias between Modalities: Effect on the Internal Clock, Memory, and Decision Stages Used in Animal Time Discrimination. Annals of the New York Academy of Sciences, 1984, 423, 528-541.	3.8	140
174	Simultaneous temporal processing Journal of Experimental Psychology, 1984, 10, 1-29.	1.7	92
175	Two-step acquisition: Modification of an internal clock's criterion Journal of Experimental Psychology, 1984, 10, 297-306.	1.7	28
176	Hippocampus, time, and memory Behavioral Neuroscience, 1984, 98, 3-22.	1.2	80
177	Selective adjustment of the speed of internal clock and memory processes Journal of Experimental Psychology, 1983, 9, 171-201.	1.7	457
178	A mode control model of counting and timing processes Journal of Experimental Psychology, 1983, 9, 320-334.	1.7	676
179	Abstraction of temporal attributes Journal of Experimental Psychology, 1982, 8, 226-243.	1.7	79
180	Discrimination of intertrial intervals in cross-modal transfer of duration. Bulletin of the Psychonomic Society, 1982, 19, 234-236.	0.2	29

#	Article	IF	CITATIONS
181	PERCENTAGE REINFORCEMENT AND CHOICE. Journal of the Experimental Analysis of Behavior, 1979, 32, 335-340.	1.1	116