Masato Matsuura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5324713/publications.pdf

Version: 2024-02-01

687220 501076 54 937 13 28 citations h-index g-index papers 54 54 54 998 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Scientific Reports, 2018, 8, 14665.	1.6	177
2	Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. American Journal of Ophthalmology, 2019, 198, 136-145.	1.7	164
3	Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation. Ophthalmology Glaucoma, 2019, 2, 224-231.	0.9	42
4	Evaluating the Usefulness of MP-3 Microperimetry in Glaucoma Patients. American Journal of Ophthalmology, 2018, 187, 1-9.	1.7	39
5	A polydiagnostic and dimensional comparison of epileptic psychoses and schizophrenia spectrum disorders. Schizophrenia Research, 2004, 69, 189-201.	1.1	38
6	Effects of Study Population, Labeling and Training on Glaucoma Detection Using Deep Learning Algorithms. Translational Vision Science and Technology, 2020, 9, 27.	1.1	35
7	Assessing Visual Fields in Patients with Retinitis Pigmentosa Using a Novel Microperimeter with Eye Tracking: The MP-3. PLoS ONE, 2016, 11, e0166666.	1.1	34
8	Changes in Corneal Biomechanics and Intraocular Pressure Following Cataract Surgery. American Journal of Ophthalmology, 2018, 195, 26-35.	1.7	34
9	Deep learning model to predict visual field in central $10\hat{A}^\circ$ from optical coherence tomography measurement in glaucoma. British Journal of Ophthalmology, 2021, 105, 507-513.	2.1	32
10	Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma. British Journal of Ophthalmology, 2017, 101, 1658-1665.	2.1	24
11	Validating Variational Bayes Linear Regression Method With Multi-Central Datasets. , 2018, 59, 1897.		19
12	Relationship between novel intraocular pressure measurement from Corvis ST and central corneal thickness and corneal hysteresis. British Journal of Ophthalmology, 2020, 104, 563-568.	2.1	19
13	Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression. American Journal of Ophthalmology, 2020, 218, 304-313.	1.7	19
14	Changes in Axial Length and Progression of Visual Field Damage in Glaucoma. , 2018, 59, 407.		17
15	Developing an Item Bank to Measure Quality of Life in Individuals With Glaucoma, and the Results of the Interview With Patients: The Effect of Visual Function, Visual Field Progression Rate, Medical, and Surgical Treatments on Quality of Life. Journal of Glaucoma, 2017, 26, e64-e73.	0.8	15
16	Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns., 2018, 59, 5717.		15
17	Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone. British Journal of Ophthalmology, 2022, 106, 587-592.	2.1	13
18	The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression. Scientific Reports, 2018, 8, 2969.	1.6	12

#	Article	IF	Citations
19	Early Detection of Glaucomatous Visual Field Progression Using Pointwise Linear Regression With Binomial Test in the Central 10 Degrees. American Journal of Ophthalmology, 2019, 199, 140-149.	1.7	12
20	The association between photoreceptor layer thickness measured by optical coherence tomography and visual sensitivity in glaucomatous eyes. PLoS ONE, 2017, 12, e0184064.	1.1	12
21	Repeatability of the Novel Intraocular Pressure Measurement From Corvis ST. Translational Vision Science and Technology, 2019, 8, 48.	1.1	11
22	Estimating the Reliability of Glaucomatous Visual Field for the Accurate Assessment of Progression Using the Gaze-Tracking and Reliability Indices. Ophthalmology Glaucoma, 2019, 2, 111-119.	0.9	11
23	Investigating the Usefulness of Fundus Autofluorescence in Retinitis Pigmentosa. Ophthalmology Retina, 2018, 2, 1062-1070.	1.2	10
24	Improving the Structure–Function Relationship in Glaucomatous Visual Fields by Using a Deep Learning–Based Noise Reduction Approach. Ophthalmology Glaucoma, 2020, 3, 210-217.	0.9	10
25	Predicting 10-2 Visual Field From Optical Coherence Tomography in Glaucoma Using Deep Learning Corrected With 24-2/30-2 Visual Field. Translational Vision Science and Technology, 2021, 10, 28.	1.1	10
26	Mapping the Central 10° Visual Field to the Optic Nerve Head Using the Structure–Function Relationship. , 2018, 59, 2801.		9
27	Improving the structure-function relationship in glaucomatous and normative eyes by incorporating photoreceptor layer thickness. Scientific Reports, 2018, 8, 10450.	1.6	8
28	The Relationship Between Corneal Hysteresis and Progression of Glaucoma After Trabeculectomy. Journal of Glaucoma, 2020, 29, 912-917.	0.8	8
29	The usefulness of the Deep Learning method of variational autoencoder to reduce measurement noise in glaucomatous visual fields. Scientific Reports, 2020, 10, 7893.	1.6	8
30	The Relationship between the Waveform Parameters from the Ocular Response Analyzer and the Progression of Glaucoma. Ophthalmology Glaucoma, 2018, 1, 123-131.	0.9	7
31	Correlation between elastic energy stored in an eye and visual field progression in glaucoma. PLoS ONE, 2018, 13, e0204451.	1.1	7
32	A Joint Multitask Learning Model for Cross-sectional and Longitudinal Predictions of Visual Field Using OCT. Ophthalmology Science, 2021, 1, 100055.	1.0	7
33	The relationship between retinal nerve fibre layer thickness profiles and CorvisST tonometry measured biomechanical properties in young healthy subjects. Scientific Reports, 2017, 7, 414.	1.6	6
34	Validating the efficacy of the binomial pointwise linear regression method to detect glaucoma progression with multicentral database. British Journal of Ophthalmology, 2020, 104, 569-574.	2.1	6
35	Development of a Novel Corneal Concavity Shape Parameter and Its Association with Glaucomatous Visual Field Progression. Ophthalmology Glaucoma, 2019, 2, 47-54.	0.9	5
36	Relationship Between the Shift of the Retinal Artery Associated With Myopia and Ocular Response Analyzer Waveform Parameters. Translational Vision Science and Technology, 2019, 8, 15.	1.1	5

3

#	Article	IF	CITATIONS
37	Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm. British Journal of Ophthalmology, 2022, 106, 660-666.	2.1	5
38	The association between ocular surface measurements with visual field reliability indices and gaze tracking results in preperimetric glaucoma. British Journal of Ophthalmology, 2018, 102, 525-530.	2.1	4
39	Goldmann V Standard Automated Perimetry Underestimates Central Visual Sensitivity in Glaucomatous Eyes with Increased Axial Length. Translational Vision Science and Technology, 2017, 6, 13.	1.1	3
40	Correlation Between the Myopic Retinal Deformation and Corneal Biomechanical Characteristics Measured With the Corvis ST Tonometry. Translational Vision Science and Technology, 2019, 8, 26.	1.1	3
41	Usefulness of data augmentation for visual field trend analyses in patients with glaucoma. British Journal of Ophthalmology, 2020, 104, 1697-1703.	2.1	3
42	Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the peripapillary retinal arteries angle. Scientific Reports, 2020, 10, 6592.	1.6	3
43	Improving Visual Field Trend Analysis with OCT and Deeply Regularized Latent-Space Linear Regression. Ophthalmology Glaucoma, 2021, 4, 78-88.	0.9	3
44	Title is missing!. Japanese Journal of Clinical Pharmacology and Therapeutics, 1981, 12, 377-396.	0.1	3
45	Two Kinds of Spatiotemporal EEG Changes after Discontinuation of Benzodiazepine, Medazepam. Psychiatry and Clinical Neurosciences, 1990, 44, 85-90.	1.0	2
46	Reply. American Journal of Ophthalmology, 2018, 190, 201-202.	1.7	2
47	Relationship between the Vertical Asymmetry of the Posterior Pole of the Eye and the Visual Field Damage in Glaucomatous Eyes. Ophthalmology Glaucoma, 2019, 2, 28-35.	0.9	2
48	Comment on Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2020, 209, 216-217.	1.7	2
49	Validating the usefulness of sectorwise regression of visual field in the central 10°. British Journal of Ophthalmology, 2022, 106, 497-501.	2.1	2
50	A Clinicoelectroencephalographic Study of Children with and without Seizures Showing Rolandic Discharge in their EEGs. Psychiatry and Clinical Neurosciences, 1987, 41, 453-454.	1.0	0
51	A Study of Healthy Children Showing Epileptiform Discharges in their EEGs. Psychiatry and Clinical Neurosciences, 1987, 41, 459-460.	1.0	0
52	Neuroendocrinological Effects of L-Threo-3, 4-Dihydroxyphenylserine (DOPS), a Putative Norepinephrine Precursor, on Healthy Volunteers. Psychiatry and Clinical Neurosciences, 1990, 44, 73-78.	1.0	0
53	Social Adjustment of Epileptic Patients with Psychiatric Symptoms. Psychiatry and Clinical Neurosciences, 1991, 45, 490-492.	1.0	0
54	Investigating the structureâ€function relationship using Goldmann V standard automated perimetry where glaucomatous damage is advanced. Ophthalmic and Physiological Optics, 2019, 39, 441-450.	1.0	0