Stephen J Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5324556/publications.pdf

Version: 2024-02-01

430874 580821 26 695 18 25 citations g-index h-index papers 26 26 26 940 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Schistosome AMPK Is Required for Larval Viability and Regulates Glycogen Metabolism in Adult Parasites. Frontiers in Microbiology, 2021, 12, 726465.	3.5	2
2	A secreted schistosome cathepsin B1 cysteine protease and acute schistosome infection induce a transient T helper 17 response. PLoS Neglected Tropical Diseases, 2019, 13, e0007070.	3.0	20
3	Host Adaptive Immune Status Regulates Expression of the Schistosome AMP-Activated Protein Kinase. Frontiers in Immunology, 2018, 9, 2699.	4.8	3
4	Modulation of Innate Antigen-Presenting Cell Function by Pre-patent Schistosome Infection. PLoS Neglected Tropical Diseases, 2013, 7, e2136.	3.0	9
5	Regulation of Innate Responses during Pre-patent Schistosome Infection Provides an Immune Environment Permissive for Parasite Development. PLoS Pathogens, 2013, 9, e1003708.	4.7	27
6	Chronic Helminth Infection Reduces Basophil Responsiveness in an IL-10–Dependent Manner. Journal of Immunology, 2012, 188, 4188-4199.	0.8	49
7	Helminth Protection against Autoimmune Diabetes in Nonobese Diabetic Mice Is Independent of a Type 2 Immune Shift and Requires TGF- \hat{l}^2 . Journal of Immunology, 2012, 188, 559-568.	0.8	98
8	Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends in Parasitology, 2011, 27, 555-564.	3.3	31
9	Morphometric and Molecular Analyses of the Sand Fly Species Lutzomyia shannoni (Diptera:) Tj ETQq1 1 0.78431 United States. Journal of Medical Entomology, 2011, 48, 154-166.	1.8 1.8	verlock 10 Tf 20
10	Rapid induction of IgE responses to a worm cysteine protease during murine pre-patent schistosome infection. BMC Immunology, 2010, $11,56$.	2.2	33
11	Conservation of protein kinase a catalytic subunit sequences in the schistosome pathogens of humans. Experimental Parasitology, 2010, 125, 156-160.	1.2	4
12	Developmental regulation of protein kinase A expression and activity in Schistosoma mansoni. International Journal for Parasitology, 2010, 40, 929-935.	3.1	20
13	Induction of Type 2 Responses by Schistosome Worms during Prepatent Infection. Journal of Infectious Diseases, 2010, 201, 464-472.	4.0	40
14	Blood Fluke Exploitation of Non-Cognate CD4+ T Cell Help to Facilitate Parasite Development. PLoS Pathogens, 2010, 6, e1000892.	4.7	36
15	Morphological Anomalies in Two <i>Lutzomyia</i> (<i>Psathyromyia</i>) <i>shannoni</i> (Diptera:) Tj ETQq1 1 0 Kentucky. Journal of Medical Entomology, 2010, 47, 952-956.	0.784314 ı 1.8	rgBT /Overlo
16	Population Dynamics of Lutzomyia shannoni (Diptera: Psychodidae) at the Patuxent National Wildlife Research Refuge, Maryland. Journal of the American Mosquito Control Association, 2010, 26, 337-339.	0.7	0
17	A Schistosome cAMP-Dependent Protein Kinase Catalytic Subunit Is Essential for Parasite Viability. PLoS Neglected Tropical Diseases, 2009, 3, e505.	3.0	40
18	Conservation of CD4+ T cell-dependent developmental mechanisms in the blood fluke pathogens of humans. International Journal for Parasitology, 2007, 37, 405-415.	3.1	20

STEPHEN J DAVIES

#	Article	IF	CITATION
19	The Common γ Chain Cytokines Interleukin (IL)–2 and ILâ€7 Indirectly Modulate Blood Fluke Development via Effects on CD4+T Cells. Journal of Infectious Diseases, 2006, 194, 1609-1616.	4.0	33
20	In vivo imaging of tissue eosinophilia and eosinopoietic responses to schistosome worms and eggs. International Journal for Parasitology, 2005, 35, 851-859.	3.1	26
21	Involvement of TNF in limiting liver pathology and promoting parasite survival during schistosome infection. International Journal for Parasitology, 2004, 34, 27-36.	3.1	53
22	Schistosoma mansoni: sex-specific modulation of parasite growth by host immune signals. Experimental Parasitology, 2004, 106, 59-61.	1.2	30
23	Developmental plasticity in schistosomes and other helminths. International Journal for Parasitology, 2003, 33, 1277-1284.	3.1	34
24	Caveolae-like structures in the surface membrane of Schistosoma mansoni. Molecular and Biochemical Parasitology, 1999, 104, 285-297.	1.1	25
25	Evaluation of recombinant protein r140, a polypeptide segment of tegumental glycoprotein Sm25, as a defined antigen vaccine against Schistosoma mansoni. Parasite Immunology, 1997, 19, 515-529.	1.5	9
26	Surface-associated serine-threonine kinase in Schistosoma mansoni. Molecular and Biochemical Parasitology, 1995, 70, 33-44.	1.1	29