Julie A Tucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5324517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 6513-6540.	6.4	3
2	Validation of ion mobility spectrometry ―mass spectrometry as a screening tool to identify type II kinase inhibitors of FGFR1 kinase. Rapid Communications in Mass Spectrometry, 2021, , e9130.	1.5	4
3	The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets, 2021, 32, 770-778.	2.3	23
4	An Alkynylpyrimidine-Based Covalent Inhibitor That Targets a Unique Cysteine in NF-κB-Inducing Kinase. Journal of Medicinal Chemistry, 2021, 64, 10001-10018.	6.4	9
5	Recent Advances in Kinase Drug Discovery Part I: The Editors' Take. International Journal of Molecular Sciences, 2021, 22, 7560.	4.1	1
6	Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nature Communications, 2020, 11, 1383.	12.8	30
7	Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science, 2020, 367, 643-652.	12.6	123
8	Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochemical Society Transactions, 2020, 48, 1859-1875.	3.4	22
9	Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4. European Journal of Medicinal Chemistry, 2019, 178, 530-543.	5.5	15
10	New Paradigms for the Mechanisms of Thrombopoietin Receptor Activation and Dysregulation By the JAK2V617F Mutation. Blood, 2019, 134, 2962-2962.	1.4	0
11	Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. Journal of Medicinal Chemistry, 2018, 61, 10767-10792.	6.4	23
12	Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Oncotarget, 2018, 9, 13139-13153.	1.8	25
13	Keep it together: restraints in crystallographic refinement of macromolecule–ligand complexes. Acta Crystallographica Section D: Structural Biology, 2017, 73, 93-102.	2.3	19
14	Structural insights into the enzymatic activity and potential substrate promiscuity of human 3-phosphoglycerate dehydrogenase (PHGDH). Oncotarget, 2017, 8, 104478-104491.	1.8	27
15	First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chemical Biology, 2016, 11, 3179-3190.	3.4	101
16	Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site. Acta Crystallographica Section D: Structural Biology, 2016, 72, 682-693.	2.3	15
17	Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9. MedChemComm, 2016, 7, 1580-1586.	3.4	19
18	Small Molecule Binding Sites on the Ras:SOS Complex Can Be Exploited for Inhibition of Ras Activation. Journal of Medicinal Chemistry, 2015, 58, 2265-2274.	6.4	104

Julie A Tucker

#	Article	IF	CITATIONS
19	Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase. Nature Communications, 2015, 6, 7877.	12.8	52
20	Structure Guided Lead Generation for <i>M. tuberculosis</i> Thymidylate Kinase (Mtb TMK): Discovery of 3-Cyanopyridone and 1,6-Naphthyridin-2-one as Potent Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 753-766.	6.4	40
21	Structural Insights into FGFR Kinase Isoform Selectivity: Diverse Binding Modes of AZD4547 and Ponatinib in Complex with FGFR1 and FGFR4. Structure, 2014, 22, 1764-1774.	3.3	81
22	FGFR1 Kinase Inhibitors: Close Regioisomers Adopt Divergent Binding Modes and Display Distinct Biophysical Signatures. ACS Medicinal Chemistry Letters, 2014, 5, 166-171.	2.8	14
23	Thiazolopyridine Ureas as Novel Antitubercular Agents Acting through Inhibition of DNA Gyrase B. Journal of Medicinal Chemistry, 2013, 56, 8834-8848.	6.4	55
24	Aminopyrazinamides: Novel and Specific GyrB Inhibitors that Kill Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> . ACS Chemical Biology, 2013, 8, 519-523.	3.4	76
25	Discovery of Novel Potent and Highly Selective Glycogen Synthase Kinase-3β (CSK3β) Inhibitors for Alzheimer's Disease: Design, Synthesis, and Characterization of Pyrazines. Journal of Medicinal Chemistry, 2012, 55, 9107-9119.	6.4	126
26	Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-Based Lead Generation. Journal of Medicinal Chemistry, 2012, 55, 3285-3306.	6.4	144
27	Structures of the Human Poly (ADP-Ribose) Glycohydrolase Catalytic Domain Confirm Catalytic Mechanism and Explain Inhibition by ADP-HPD Derivatives. PLoS ONE, 2012, 7, e50889.	2.5	46
28	Discovery of azabenzimidazole derivatives as potent, selective inhibitors of TBK1/IKKε kinases. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2063-2069.	2.2	42
29	Novel thienopyrimidine and thiazolopyrimidine kinase inhibitors with activity against Tie-2 in vitro and in vivo. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6670-6674.	2.2	32
30	Imidazole piperazines: SAR and development of a potent class of cyclin-dependent kinase inhibitors with a novel binding mode. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4442-4446.	2.2	32
31	Imidazoles: SAR and development of a potent class of cyclin-dependent kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5487-5492.	2.2	28
32	The discovery of AZD5597, a potent imidazole pyrimidine amide CDK inhibitor suitable for intravenous dosing. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6369-6373.	2.2	41
33	How Tyrosine 15 Phosphorylation Inhibits the Activity of Cyclin-dependent Kinase 2-Cyclin A. Journal of Biological Chemistry, 2007, 282, 3173-3181.	3.4	85
34	Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2503-2507.	2.2	68
35	Crystal Structure of Human Thymidine Phosphorylase in Complex with a Small Molecule Inhibitor. Structure, 2004, 12, 75-84.	3.3	82
36	Imidazo[1,2- b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2249-2252.	2.2	78

JULIE A TUCKER

#	Article	IF	CITATIONS
37	Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimisation of substituted 4,6-Bis anilino pyrimidines. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2955-2960.	2.2	94
38	Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 2: identification and optimisation of substituted 2,4-bis anilino pyrimidines. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2961-2966.	2.2	61
39	Probing the ATP Ribose-Binding Domain of Cyclin-Dependent Kinases 1 and 2 withO6-Substituted Guanine Derivatives. Journal of Medicinal Chemistry, 2002, 45, 3381-3393.	6.4	90
40	Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor. Nature Structural Biology, 2002, 9, 745-749.	9.7	198
41	Cyclin-dependent kinases: inhibition and substrate recognition. Current Opinion in Structural Biology, 1999, 9, 738-744.	5.7	109
42	Quantitative Evaluation of Neurotensin Receptor Purification by Immobilized Metal Affinity Chromatography. Protein Expression and Purification, 1997, 11, 53-60.	1.3	66
43	Title is missing!. Biotechnology Letters, 1997, 19, 425-428.	2.2	26
44	Purification of a rat neurotensin receptor expressed in <i>Escherichia coli</i> . Biochemical Journal, 1996, 317, 891-899.	3.7	200