Lawrence Yoon Suk Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5324429/lawrence-yoon-suk-lee-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

79	3,192	29	55
papers	citations	h-index	g-index
95 ext. papers	4,619 ext. citations	11.6 avg, IF	6.32 L-index

#	Paper	IF	Citations
79	Hierarchical mesoporous MoS2 frameworks with conformal carbon coating as a high-rate and stable anode in Li-ion battery. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 905, 115965	4.1	O
78	Beyond sonication: Advanced exfoliation methods for scalable production of 2D materials. <i>Matter</i> , 2022 , 5, 515-545	12.7	3
77	Bismuth and metal-doped bismuth nanoparticles produced by laser ablation for electrochemical glucose sensing. <i>Sensors and Actuators B: Chemical</i> , 2022 , 357, 131334	8.5	3
76	Metallated terpolymer donors with strongly absorbing iridium complex enables polymer solar cells with 16.71% efficiency. <i>Chemical Engineering Journal</i> , 2022 , 430, 132832	14.7	5
75	Tuning the Electronic Structure and Inverse Degree of Inverse Spinel Ferrites by Integrating Samarium Orthoferrite for Efficient Water Oxidation. <i>Applied Catalysis B: Environmental</i> , 2022 , 121504	21.8	2
74	Ni nanoparticles on active (001) facet-exposed rutile TiO2 nanopyramid arrays for efficient hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119548	21.8	21
73	Copper-Doped ZnS with Internal Phase Junctions for Highly Selective CO Production from CO2 Photoreduction. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2586-2592	6.1	1
72	Few-Layer Tellurium: Cathodic Exfoliation and Doping for Collaborative Hydrogen Evolution. <i>Small</i> , 2021 , 17, e2007768	11	3
71	Stabilizer-free bismuth nanoparticles for selective polyol electrooxidation. <i>IScience</i> , 2021 , 24, 102342	6.1	1
70	Interface Engineering of a 2D-CN/NiFe-LDH Heterostructure for Highly Efficient Photocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Engineering (Supplied Materials & Engineering Control of Co</i>	9.5	9
69	Unexpected Promotional Effects of Alkyl-Tailed Ligands and Anions on the Electrochemical Generation of Ruthenium(IV)-Oxo Complexes. <i>ChemElectroChem</i> , 2021 , 8, 2221-2230	4.3	
68	Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119879	21.8	27
67	Interface engineered NiFe2O4½/NiMoO4 nanowire arrays for electrochemical oxygen evolution. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119857	21.8	53
66	Laser-Ablated Red Phosphorus on Carbon Nanotube Film for Accelerating Polysulfide Conversion toward High-Performance and Flexible Lithium-Sulfur Batteries <i>Small Methods</i> , 2021 , 5, e2100215	12.8	9
65	Metal®rganic Frameworks for Electrocatalysis: Catalyst or Precatalyst?. <i>ACS Energy Letters</i> , 2021 , 6, 2838-2843	20.1	31
64	Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO Core-shell template as a sulfur host for Li-S batteries. <i>Chemical Engineering Journal</i> , 2021 , 407, 126967	14.7	36
63	Facilitated Water Adsorption and Dissociation on Ni/Ni 3 S 2 Nanoparticles Embedded in Porous S-doped Carbon Nanosheet Arrays for Enhanced Hydrogen Evolution. <i>Advanced Materials Interfaces</i> . 2021 , 8, 2001665	4.6	6

(2020-2021)

62	Highly promoted hydrogen production enabled by interfacial P N chemical bonds in copper phosphosulfide Z-scheme composite. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119624	21.8	20
61	Highly Efficient Electrocatalytic Water Splitting 2021 , 1335-1367		
60	Synergies of Fe Single Atoms and Clusters on N-Doped Carbon Electrocatalyst for pH-Universal Oxygen Reduction <i>Small Methods</i> , 2021 , 5, e2001165	12.8	24
59	Photocatalytic CO Reduction Enabled by Interfacial S-Scheme Heterojunction between Ultrasmall Copper Phosphosulfide and g-CN. <i>ACS Applied Materials & Distributed Materials &</i>	9.5	38
58	Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe-Layered Double Hydroxide. <i>Advanced Energy Materials</i> , 2021 , 11, 2101281	21.8	30
57	Tuning the Electrochemical Properties of Polymeric Cobalt Phthalocyanines for Efficient Water Splitting. <i>Advanced Functional Materials</i> , 2021 , 31, 2103290	15.6	10
56	TiO2 film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 417, 127900	14.7	8
55	Impacts of boron doping on the atomic structure, stability, and photocatalytic activity of Cu3P nanocrystals. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120515	21.8	3
54	Carbon-mediated electron transfer channel between SnO2 QDs and g-C3N4 for enhanced photocatalytic H2 production. <i>Chemical Engineering Journal</i> , 2021 , 425, 131512	14.7	4
53	Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. <i>Nanoscale</i> , 2021 , 13, 15177-15187	7.7	4
52	Copper phosphosulfides as a highly active and stable photocatalyst for hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 273, 118927	21.8	19
51	Laser-Assisted Ultrafast Exfoliation of Black Phosphorus in Liquid with Tunable Thickness for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 1903490	21.8	22
50	Nanostructured Semiconductors for Photocatalytic CO2 Reduction 2020 , 1-36		
49	Highly Efficient Electrocatalytic Water Splitting 2020 , 1-33		
48	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. <i>Chemical Reviews</i> , 2020 , 120, 851-918	68.1	722
47	Fe2O3 nanoparticles anchored in MWCNT hybrids as efficient sulfur hosts for high-performance lithium-sulfur battery cathode. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 858, 113806	4.1	10
46	Electrochemical Instability of Metal Drganic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites. <i>ACS Catalysis</i> , 2020 , 10, 81-92	13.1	113
45	Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. <i>ACS Energy Letters</i> , 2020 , 5, 3260-3264	20.1	42

44	Blue ordered/disordered Janus-type TiO2 nanoparticles for enhanced photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22828-22839	13	10
43	Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 221-227	13	37
42	Highly efficient stepwise electrochemical degradation of antibiotics in water by in situ formed Cu(OH)2 nanowires. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117824	21.8	5
41	Insights into the transition metal ion-mediated electrooxidation of glucose in alkaline electrolyte. <i>Electrochimica Acta</i> , 2019 , 308, 9-19	6.7	14
40	Highly Enhanced Pseudocapacitive Performance of Vanadium-Doped MXenes in Neutral Electrolytes. <i>Small</i> , 2019 , 15, e1902649	11	23
39	Psesudocubic Phase Tungsten Oxide as a Photocatalyst for Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8792-8800	6.1	8
38	Surface Engineering of MoS via Laser-Induced Exfoliation in Protic Solvents. <i>Small</i> , 2019 , 15, e1903791	11	17
37	Use of carbon supports with copper ion as a highly sensitive non-enzymatic glucose sensor. <i>Sensors and Actuators B: Chemical</i> , 2019 , 282, 187-196	8.5	25
36	Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co-B-O@Co3O4 electrocatalyst for oxygen evolution reaction. <i>Electrochimica Acta</i> , 2019 , 299, 213-221	6.7	14
35	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. <i>Materials Today Chemistry</i> , 2019 , 12, 34-60	6.2	69
34	Transition metal-doped nickel phosphide nanoparticles as electro- and photocatalysts for hydrogen generation reactions. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 186-193	21.8	84
33	Cu2+-doped Carbon Nitride/MWCNT as an Electrochemical Glucose Sensor. <i>Electroanalysis</i> , 2018 , 30, 1446-1454	3	18
32	2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4754-4765	6.1	65
31	Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). <i>Chemical Communications</i> , 2018 , 54, 8630-8633	5.8	52
30	Overall Water-Splitting Electrocatalysts Based on 2D CoNi-Metal-Organic Frameworks and Its Derivative. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800849	4.6	43
29	Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. <i>Nano Energy</i> , 2018 , 52, 360-368	17.1	88
28	Creating Multiple Parallel Internal Phase Junctions on ZnS Nanoparticles as Highly Active Catalytic Sites. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800611	4.6	5
27	Water-Splitting: Overall Water-Splitting Electrocatalysts Based on 2D CoNi-Metal-Organic Frameworks and Its Derivative (Adv. Mater. Interfaces 21/2018). <i>Advanced Materials Interfaces</i> , 2018 , 5, 1870106	4.6	1

(2012-2018)

26	Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. <i>Angewandte Chemie</i> , 2018 , 130, 16690-16695	3.6	2
25	Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. Angewandte Chemie - International Edition, 2018, 57, 16452-16457	16.4	39
24	CuZnSnS/MoS-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation. <i>Scientific Reports</i> , 2017 , 7, 39411	4.9	40
23	Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors. <i>Nano Energy</i> , 2017 , 34, 515-523	17.1	49
22	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. <i>Coordination Chemistry Reviews</i> , 2017 , 352, 306-327	23.2	315
21	Cull-Mediated Ultra-efficient Electrooxidation of Glucose. <i>ChemElectroChem</i> , 2017 , 4, 2788-2792	4.3	14
20	Electrocatalytic Reduction of Carbon Dioxide. <i>CheM</i> , 2017 , 3, 717-718	16.2	17
19	Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. <i>Nano Energy</i> , 2016 , 26, 603-609	17.1	92
18	Æight upPprotein-protein interaction through bioorthogonal incorporation of a turn-on fluorescent probe into 且actamase. <i>Molecular BioSystems</i> , 2016 , 12, 3544-3549		4
17	Dominant Factors Governing the Electron Transfer Kinetics and Electrochemical Biosensing Properties of Carbon Nanofiber Arrays. <i>ACS Applied Materials & District Arrays and Electrochemical Biosensing Properties of Carbon Nanofiber Arrays.</i>	9.5	14
16	Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 781, 155-160	4.1	66
15	Morphology-Controlled Synthesis of Au/CuffeSnSlCore-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation. <i>ACS Applied Materials & Description (Materials & Description (Mat</i>	9.5	47
14	Recent Development in Water Oxidation Catalysts Based on Manganese and Cobalt Complexes. <i>Green Chemistry and Sustainable Technology</i> , 2015 , 365-394	1.1	
13	A green catalysis of CO2 fixation to aliphatic cyclic carbonates by a new ionic liquid system. <i>Applied Catalysis A: General</i> , 2014 , 472, 160-166	5.1	28
12	Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2 ZnSnS4 nanostructure. <i>Advanced Materials</i> , 2014 , 26, 3496-500	24	150
11	Controlling the selectivity of the manganese/bicarbonate/hydrogen peroxide catalytic system by a biphasic pyrrolidinium ionic liquid/n-heptane medium. <i>Applied Catalysis A: General</i> , 2013 , 453, 244-249	5.1	10
10	A Dopamine Electrochemical Sensor Based on Molecularly Imprinted Poly(acrylamidophenylboronic acid) Film. <i>Electroanalysis</i> , 2013 , 25, 1085-1094	3	30
9	Ruthenium terpyridine complexes containing a pyrrole-tagged 2,2Pdipyridylamine ligand-synthesis, crystal structure, and electrochemistry. <i>Inorganic Chemistry</i> , 2012 , 51, 6468-75	5.1	16

8	Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions. <i>ACS Catalysis</i> , 2011 , 1, 116-119	13.1	38
7	Manganese acetate in pyrrolidinium ionic liquid as a robust and efficient catalytic system for epoxidation of aliphatic terminal alkenes. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1970-3	4.5	12
6	Electrocatalytic reduction of carbon dioxide by a polymeric film of rhenium tricarbonyl dipyridylamine. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 2842-2845	2.3	30
5	Ferrocenylalkylthiolate labeling of defects in alkylthiol self-assembled monolayers on gold. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 1013-20	3.6	22
4	Electrochemical desorption of n-alkylthiol SAMs on polycrystalline gold: studies using a ferrocenylalkylthiol probe. <i>Langmuir</i> , 2007 , 23, 292-6	4	46
3	Ferrocenylalkylthiolates as a probe of heterogeneity in binary self-assembled monolayers on gold. <i>Langmuir</i> , 2006 , 22, 4438-44	4	126
2	1H fast MAS NMR studies of hydrogen-bonding interactions in self-assembled monolayers. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4174-84	16.4	114
1	Comparison of an intercalating dye and an intercalant-enzyme conjugate for DNA detection in a microtiter-based assay. <i>Analytical Chemistry</i> , 1996 , 68, 1197-200	7.8	6