Stephen M Swain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5324060/publications.pdf Version: 2024-02-01

STEDHEN M SWAIN

#	Article	IF	CITATIONS
1	Nucleotide mismatches prevent intrinsic self-silencing of hpRNA transgenes to enhance RNAi stability in plants. Nature Communications, 2022, 13, .	12.8	2
2	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	14.0	285
3	Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems. Frontiers in Plant Science, 2020, 11, 190.	3.6	6
4	<i>TEOSINTE BRANCHED1</i> Regulates Inflorescence Architecture and Development in Bread Wheat (<i>Triticum aestivum</i>). Plant Cell, 2018, 30, 563-581.	6.6	215
5	Zebularine treatment is associated with deletion of <i>FT</i> â€ <i>B1</i> leading to an increase in spikelet number in bread wheat. Plant, Cell and Environment, 2018, 41, 1346-1360.	5.7	36
6	New alleles of the wheat domestication gene <i>Q</i> reveal multiple roles in growth and reproductive development. Development (Cambridge), 2017, 144, 1959-1965.	2.5	74
7	Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants, 2015, 1, 14016.	9.3	186
8	A genetic strategy generating wheat with very high amylose content. Plant Biotechnology Journal, 2015, 13, 1276-1286.	8.3	88
9	<i>EARLY FLOWERING3</i> Regulates Flowering in Spring Barley by Mediating Gibberellin Production and <i>FLOWERING LOCUS T</i> Expression Â. Plant Cell, 2014, 26, 1557-1569.	6.6	121
10	Modifications of a conserved regulatory network involving <scp>INDEHISCENT</scp> controls multiple aspects of reproductive tissue development in Arabidopsis. New Phytologist, 2013, 197, 73-87.	7.3	56
11	Incest versus abstinence: reproductive tradeâ€offs between mate limitation and progeny fitness in a selfâ€incompatible invasive plant. Ecology and Evolution, 2013, 3, 5066-5075.	1.9	4
12	Inhibition of Tiller Bud Outgrowth in the <i>tin</i> Mutant of Wheat Is Associated with Precocious Internode Development. Plant Physiology, 2012, 160, 308-318.	4.8	145
13	Grain dormancy and light quality effects on germination in the model grass <i>Brachypodium distachyon</i> . New Phytologist, 2012, 193, 376-386.	7.3	100
14	<i>SPATULA</i> and <i>ALCATRAZ,</i> are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant Journal, 2011, 68, 816-829.	5.7	92
15	Preventing unwanted breakups. Plant Signaling and Behavior, 2011, 6, 93-97.	2.4	25
16	Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. Physiologia Plantarum, 2010, 138, 74-90.	5.2	29
17	ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 Are Polygalacturonases Required for Cell Separation during Reproductive Development in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 216-233.	6.6	351
18	Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis. Planta, 2009, 229, 523-537.	3.2	17

STEPHEN M SWAIN

#	Article	IF	CITATIONS
19	Potential Sites of Bioactive Gibberellin Production during Reproductive Growth in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 320-336.	6.6	209
20	Functional Analysis of SPINDLY in Gibberellin Signaling in Arabidopsis. Plant Physiology, 2007, 143, 987-1000.	4.8	146
21	Functional characterization of <i>AP3</i> , <i>SOC1</i> and <i>WUS</i> homologues from citrus (<i>Citrus sinensis</i>). Physiologia Plantarum, 2007, 131, 481-495.	5.2	90
22	Preliminary development of a genetic strategy to prevent transgene escape by blocking effective pollen flow from transgenic plants. Functional Plant Biology, 2007, 34, 1055.	2.1	6
23	Localised and non-localised promotion of fruit development by seeds in Arabidopsis. Functional Plant Biology, 2006, 33, 1.	2.1	40
24	Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum, 2006, 128, 8-17.	5.2	83
25	Regulation of the early GA biosynthesis pathway in pea. Planta, 2005, 222, 1010-1019.	3.2	31
26	Plants with Increased Expression of ent-Kaurene Oxidase are Resistant to Chemical Inhibitors of this Gibberellin Biosynthesis Enzyme. Plant and Cell Physiology, 2005, 46, 284-291.	3.1	26
27	Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends in Plant Science, 2005, 10, 123-129.	8.8	157
28	The gar2 and rga Alleles Increase the Growth of Gibberellin-Deficient Pollen Tubes in Arabidopsis. Plant Physiology, 2004, 134, 694-705.	4.8	32
29	SPYing on GA Signaling and Plant Development. Journal of Plant Growth Regulation, 2003, 22, 163-175.	5.1	20
30	SPINDLY Is a Nuclear-Localized Repressor of Gibberellin Signal Transduction Expressed throughout the Plant. Plant Physiology, 2002, 129, 605-615.	4.8	76
31	Gibberellins Are Required for Seed Development and Pollen Tube Growth in Arabidopsis. Plant Cell, 2002, 14, 3133-3147.	6.6	225
32	The role of SPY and its TPR domain in the regulation of gibberellin action throughout the life cycle of Petunia hybrida plants. Plant Journal, 2001, 28, 181-190.	5.7	54
33	Altered Expression of SPINDLY Affects Gibberellin Response and Plant Development. Plant Physiology, 2001, 126, 1174-1185.	4.8	103
34	Ectopic Expression of the Tetratricopeptide Repeat Domain of SPINDLY Causes Defects in Gibberellin Response. Plant Physiology, 2001, 126, 1250-1258.	4.8	46
35	Expression of gibberellin mutations in fruits of Pisum sativum L. Planta, 1998, 204, 397-403.	3.2	22
36	Identification of a Negative Regulator of Gibberellin Action, HvSPY, in Barley. Plant Cell, 1998, 10, 995-1007.	6.6	106

STEPHEN M SWAIN

#	Article	IF	CITATIONS
37	The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant Journal, 1997, 11, 443-454.	5.7	104
38	Gibberellins are required for embryo growth and seed development in pea. Plant Journal, 1997, 12, 1329-1338.	5.7	122
39	Genetic regulation of gibberellin deactivation in Pisum. Plant Journal, 1995, 7, 513-523.	5.7	92
40	Internode length in Pisum. Planta, 1992, 188, 462-7.	3.2	49
41	Internode length in Pisum. A new allele at the Lh locus. Physiologia Plantarum, 1992, 86, 124-130.	5.2	17