
Gongchang Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5323472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the photocatalytic hydrogen production of Ag/g-C ₃ N ₄ nanocomposites by dye-sensitization under visible light irradiation. Nanoscale, 2016, 8, 2249-2259.	2.8	355
2	Design of Cu-Cu 2 O/g-C 3 N 4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Applied Surface Science, 2017, 391, 404-414.	3.1	195
3	In-situ synthesis of Cu nanoparticles hybridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2017, 206, 328-335.	10.8	162
4	Plasmonic Cu nanoparticle on reduced graphene oxide nanosheet support: An efficient photocatalyst for improvement of near-infrared photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 225, 172-179.	10.8	127
5	Stable and improved visible-light photocatalytic hydrogen evolution using copper(<scp>ii</scp>)–organic frameworks: engineering the crystal structures. Journal of Materials Chemistry A, 2017, 5, 6013-6018.	5.2	93
6	3D reticulated carbon nitride materials high-uniformly capture 0D black phosphorus as 3D/0D composites for stable and efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 503-512.	5.2	75
7	Facile preparation of yttrium and aluminum co-doped ZnO via a sol–gel route for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2014, 2, 11040-11044.	5.2	74
8	Alkali-assisted fabrication of holey carbon nitride nanosheet with tunable conjugated system for efficient visible-light-driven water splitting. Applied Catalysis B: Environmental, 2018, 224, 877-885.	10.8	69
9	Fabrication of a non-semiconductor photocatalytic system using dendrite-like plasmonic CuNi bimetal combined with a reduced graphene oxide nanosheet for near-infrared photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2017, 5, 22772-22781.	5.2	55
10	Synthesis of a plasmonic CuNi bimetal modified with carbon quantum dots as a non-semiconductor-driven photocatalyst for effective water splitting. Journal of Catalysis, 2019, 369, 267-275.	3.1	53
11	Enhancement of hydrogen production of a Cu–TiO ₂ nanocomposite photocatalyst combined with broad spectrum absorption sensitizer Erythrosin B. RSC Advances, 2017, 7, 17873-17881.	1.7	50
12	Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128962.	2.3	50
13	Effectively extending visible light absorption with a broad spectrum sensitizer for improving the H 2 evolution of in-situ Cu/g-C 3 N 4 nanocomponents. International Journal of Hydrogen Energy, 2017, 42, 14511-14521.	3.8	45
14	Ultrathin Carbon Nitride with Atomic-Level Intraplane Implantation of Graphited Carbon Ring Domain for Superior Photocatalytic Activity in the Visible/Near-Infrared Region. ACS Sustainable Chemistry and Engineering, 2019, 7, 1239-1249.	3.2	40
15	Constructing a novel strategy for controllable synthesis of corrosion resistant Ti ³⁺ self-doped titanium–silicon materials with efficient hydrogen evolution activity from simulated seawater. Nanoscale, 2018, 10, 2275-2284.	2.8	39
16	Gas-Exfoliation Assisted Fabrication of Porous Graphene Nanosheets Derived from <i>Plumeria rubra</i> for Highly Efficient Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11536-11546.	3.2	35
17	Cd0.5Zn0.5S/Ti3C2 MXene as a Schottky catalyst for highly efficient photocatalytic hydrogen evolution in seawater. Applied Materials Today, 2021, 22, 100926.	2.3	34
18	Selective deposition of plasmonic copper on few layers graphene with specific defects for efficiently synchronous photocatalytic hydrogen production. Carbon, 2019, 143, 257-267.	5.4	31

#	Article	IF	CITATIONS
19	Boosting the photocatalytic H ₂ evolution activity of Fe ₂ O ₃ polymorphs (l±-, l³- and l²-Fe ₂ O ₃) by fullerene [C ₆₀]-modification and dye-sensitization under visible light irradiation. RSC Advances, 2017, 7, 29184-29192.	1.7	30
20	Vopor-polymerization strategy to carbon-rich holey few-layer carbon nitride nanosheets with large domain size for superior photocatalytic hydrogen evolution. Applied Surface Science, 2019, 464, 195-204.	3.1	21
21	Plasmonic CuCo/Carbon Dots: An Unconventional Photocatalyst Used for Photocatalytic Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 17979-17987.	3.2	21
22	Inâ€Situ Construction of Globeâ€like Carbon Nitride as a Selfâ€Cocatalyst Modified Treeâ€like Carbon Nitride for Drastic Improvement in Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2017, 9, 4035-4042.	1.8	20
23	Highly efficient photocatalytic overall water splitting on plasmonic Cu6Sn5/polyaniline nanocomposites. Journal of Colloid and Interface Science, 2022, 609, 785-793.	5.0	8
24	Alkali-assisted "cutting-thin―technique into a monolayer graphene and its distinctive defects engineering for efficient photocatalytic hydrogen production. Journal of Molecular Structure, 2021, 1244, 131000.	1.8	1