

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5323124/publications.pdf Version: 2024-02-01

IIN 7цц

#	Article	IF	CITATIONS
1	Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017, 31, 113-143.	8.2	1,122
2	Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties. Macromolecules, 2017, 50, 1892-1901.	2.2	343
3	Facile <i>in situ</i> preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chemistry, 2019, 21, 1484-1497.	4.6	333
4	Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chemistry, 2013, 15, 245-254.	4.6	261
5	Robust, Fire-Safe, Monomer-Recovery, Highly Malleable Thermosets from Renewable Bioresources. Macromolecules, 2018, 51, 8001-8012.	2.2	244
6	A Chronicle Review of Nonsilicon (Sn, Sb, Ge)â€Based Lithium/Sodiumâ€Ion Battery Alloying Anodes. Small Methods, 2020, 4, 2000218.	4.6	220
7	High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. Journal of Materials Chemistry A, 2019, 7, 15420-15431.	5.2	180
8	Research progress on bioâ€based thermosetting resins. Polymer International, 2016, 65, 164-173.	1.6	173
9	High-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 7589-7599.	3.2	154
10	Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Applied Materials & Interfaces, 2020, 12, 11072-11083.	4.0	149
11	Synthesis and properties of a bio-based epoxy resin from 2,5-furandicarboxylic acid (FDCA). RSC Advances, 2015, 5, 15930-15939.	1.7	148
12	Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review. Green Chemistry, 2019, 21, 5781-5796.	4.6	148
13	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	4.6	144
14	Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. Journal of Materials Chemistry A, 2019, 7, 1233-1243.	5.2	142
15	An intumescent flame retardant system using <i>β</i> yclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies, 2011, 22, 1115-1122.	1.6	140
16	Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chemistry, 2013, 15, 1300.	4.6	139
17	Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Science China Chemistry, 2014, 57, 379-388.	4.2	139
18	The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. Journal of Applied Polymer Science, 2012, 125, 1108-1115.	1.3	130

#	Article	IF	CITATIONS
19	Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science, 2021, 56, 7231-7264.	1.7	122
20	Facile Preparation of Polyimine Vitrimers with Enhanced Creep Resistance and Thermal and Mechanical Properties via Metal Coordination. Macromolecules, 2020, 53, 2919-2931.	2.2	120
21	Tetra-(tetraalkylammonium)octamolybdate catalysts for selective oxidation of sulfides to sulfoxides with hydrogen peroxide. Green Chemistry, 2009, 11, 1401.	4.6	115
22	How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. Journal of Materials Chemistry A, 2013, 1, 5081.	5.2	112
23	Biobased Poly(ethylene 2,5-furancoate): No Longer an Alternative, but an Irreplaceable Polyester in the Polymer Industry. ACS Sustainable Chemistry and Engineering, 2020, 8, 8471-8485.	3.2	106
24	A Biologically Muscleâ€Inspired Polyurethane with Superâ€Tough, Thermal Reparable and Selfâ€Healing Capabilities for Stretchable Electronics. Advanced Functional Materials, 2021, 31, 2009869.	7.8	104
25	Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. ACS Nano, 2017, 11, 889-899.	7.3	100
26	Biobased Nitrogen- and Oxygen-Codoped Carbon Materials for High-Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 2763-2773.	3.2	95
27	Itaconic Acid as a Green Alternative to Acrylic Acid for Producing a Soybean Oil-Based Thermoset: Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 1228-1236.	3.2	94
28	Bio-based tetrafunctional crosslink agent from gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Advances, 2014, 4, 23036.	1.7	92
29	A Multiscale Investigation on the Mechanism of Shape Recovery for IPDI to PPDI Hard Segment Substitution in Polyurethane. Macromolecules, 2016, 49, 5931-5944.	2.2	92
30	Ligninâ€Based Polyurethane: Recent Advances and Future Perspectives. Macromolecular Rapid Communications, 2021, 42, e2000492.	2.0	88
31	Highly recoverable rosin-based shape memory polyurethanes. Journal of Materials Chemistry A, 2013, 1, 3263.	5.2	87
32	Making Benzoxazine Greener and Stronger: Renewable Resource, Microwave Irradiation, Green Solvent, and Excellent Thermal Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 8715-8723.	3.2	86
33	Biobased Benzoxazine Derived from Daidzein and Furfurylamine: Microwaveâ€Assisted Synthesis and Thermal Properties Investigation. ChemSusChem, 2018, 11, 3175-3183.	3.6	84
34	Facile catalyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks. Journal of Materials Chemistry A, 2019, 7, 18039-18049.	5.2	81
35	Green and Facile Preparation of Readily Dual-Recyclable Thermosetting Polymers with Superior Stability Based on Asymmetric Acetal. Macromolecules, 2020, 53, 1474-1485.	2.2	80
36	Research progress in the heat resistance, toughening and filling modification of PLA. Science China Chemistry, 2016, 59, 1355-1368.	4.2	79

#	Article	IF	CITATIONS
07	A mild method to prepare high molecular weight poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 747	7 Td (furar	ndicarboxyla
37	mechanical, and barrier properties and biodegradability. Green Chemistry, 2019, 21, 3013-3022.	4.6	76
38	Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources. Journal of Materials Chemistry A, 2020, 8, 11261-11274.	5.2	72
39	Upcycling of Polyethylene Terephthalate to Continuously Reprocessable Vitrimers through Reactive Extrusion. Macromolecules, 2021, 54, 703-712.	2.2	71
40	Synthesis of bioâ€based poly(ethylene 2,5â€furandicarboxylate) copolyesters: Higher glass transition temperature, better transparency, and good barrier properties. Journal of Polymer Science Part A, 2017, 55, 3298-3307.	2.5	69
41	Si/Ag/C Nanohybrids with <i>in Situ</i> Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS Nano, 2018, 12, 861-875.	7.3	67
42	Copolyesters Based on 2,5-Furandicarboxylic Acid (FDCA): Effect of 2,2,4,4-Tetramethyl-1,3-Cyclobutanediol Units on Their Properties. Polymers, 2017, 9, 305.	2.0	66
43	Bio-based shape memory polyurethanes (Bio-SMPUs) with short side chains in the soft segment. Journal of Materials Chemistry A, 2014, 2, 11490.	5.2	65
44	Tensile Property Balanced and Gas Barrier Improved Poly(lactic acid) by Blending with Biobased Poly(butylene 2,5-furan dicarboxylate). ACS Sustainable Chemistry and Engineering, 2017, 5, 9244-9253.	3.2	65
45	Facile synthesis of "digestibleâ€; rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chemistry, 2020, 22, 1275-1290.	4.6	64
46	Biosourced Acetal and Diels–Alder Adduct Concurrent Polyurethane Covalent Adaptable Network. Macromolecules, 2021, 54, 1742-1753.	2.2	63
47	Preparation and characterization of ligninâ€layered double hydroxide/styreneâ€butadiene rubber composites. Journal of Applied Polymer Science, 2013, 130, 1308-1312.	1.3	59
48	Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid). International Journal of Biological Macromolecules, 2015, 77, 273-279.	3.6	58
49	2,5-Furandicarboxylic Acid- and Itaconic Acid-Derived Fully Biobased Unsaturated Polyesters and Their Cross-Linked Networks. Industrial & Engineering Chemistry Research, 2017, 56, 2650-2657.	1.8	58
50	Modification of Poly(butylene 2,5-furandicarboxylate) with Lactic Acid for Biodegradable Copolyesters with Good Mechanical and Barrier Properties. Industrial & Engineering Chemistry Research, 2018, 57, 11020-11030.	1.8	58
51	High-Performance, Biobased, Degradable Polyurethane Thermoset and Its Application in Readily Recyclable Carbon Fiber Composites. ACS Sustainable Chemistry and Engineering, 2020, 8, 11162-11170.	3.2	58
52	Hexahydro- <i>s</i> -triazine: A Trial for Acid-Degradable Epoxy Resins with High Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 4683-4689.	3.2	57
53	Closed-loop chemical recycling of thermosetting polymers and their applications: a review. Green Chemistry, 2022, 24, 5691-5708.	4.6	57
54	Synthesis of Biobased Benzoxazines Suitable for Vacuum-Assisted Resin Transfer Molding Process via Introduction of Soft Silicon Segment. Industrial & Engineering Chemistry Research, 2018, 57, 3091-3102.	1.8	56

#	Article	IF	CITATIONS
55	Biobased Amorphous Polyesters with High <i>T</i> _g : Trade-Off between Rigid and Flexible Cyclic Diols. ACS Sustainable Chemistry and Engineering, 2019, 7, 6401-6411.	3.2	53
56	Synthesis and Structure–Property Relationship of Biobased Biodegradable Poly(butylene) Tj ETQq0 0 0 rgBT 7488-7498.	/Overlock 2 3.2	10 Tf 50 707 1 52
57	Poly(neopentyl glycol 2,5-furandicarboxylate): A Promising Hard Segment for the Development of Bio-based Thermoplastic Poly(ether-ester) Elastomer with High Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 9893-9902.	3.2	51
58	Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules, 2022, 23, 1622-1632.	2.6	51
59	A Selfâ€Healing and Ionic Liquid Affiliative Polyurethane toward a Piezo 2 Protein Inspired Ionic Skin. Advanced Functional Materials, 2022, 32, 2106341.	7.8	48
60	Syntheses of Metallic Cyclodextrins and Their Use as Synergists in a Poly(Vinyl Alcohol)/Intumescent Flame Retardant System. Industrial & Engineering Chemistry Research, 2013, 52, 2784-2792.	1.8	47
61	Scalable in Situ Synthesis of Li ₄ Ti ₅ O ₁₂ /Carbon Nanohybrid with Supersmall Li ₄ Ti ₅ O ₁₂ Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Interfaces, 2018, 10, 2591-2602.	4.0	47
62	Fully bioâ€based polyesters derived from 2,5â€furandicarboxylic acid (2,5â€FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer. Journal of Applied Polymer Science, 2018, 135, 46076.	1.3	47
63	Synthesis of an Epoxy Monomer from Bio-Based 2,5-Furandimethanol and Its Toughening via Diels–Alder Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 8508-8516.	1.8	46
64	Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1099-1110.	2.0	44
65	Synthesis of eugenol-based multifunctional monomers via a thiol–ene reaction and preparation of UV curable resins together with soybean oil derivatives. RSC Advances, 2016, 6, 17857-17866.	1.7	44
66	Synthesis of Eugenol-Based Silicon-Containing Benzoxazines and Their Applications as Bio-Based Organic Coatings. Coatings, 2018, 8, 88.	1.2	44
67	Synthesis of polylactideâ€ <i>graft</i> â€glycidyl methacrylate graft copolymer and its application as a coupling agent in polylactide/bamboo flour biocomposites. Journal of Applied Polymer Science, 2012, 125, E622.	1.3	43
68	Green Synthesis of a Bioâ€Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromolecular Chemistry and Physics, 2016, 217, 1439-1447.	1.1	43
69	Sustainable valorization of lignin with levulinic acid and its application in polyimine thermosets. Green Chemistry, 2019, 21, 4964-4970.	4.6	43
70	Experimental and Theoretical Study on Glycolic Acid Provided Fast Bio/Seawater-Degradable Poly(Butylene Succinate- <i>co</i> -Glycolate). ACS Sustainable Chemistry and Engineering, 2021, 9, 3850-3859.	3.2	42
71	One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle- triggered photo-catalytic degradation. Carbohydrate Polymers, 2018, 181, 499-505.	5.1	41
72	Vanillinâ€derived phosphorusâ€containing compounds and ammonium polyphosphate as green fireâ€resistant systems for epoxy resins with balanced properties. Polymers for Advanced Technologies, 2019, 30, 264-278.	1.6	40

#	Article	IF	CITATIONS
73	Upcycling of post-consumer polyolefin plastics to covalent adaptable networks <i>via in situ</i> continuous extrusion cross-linking. Green Chemistry, 2021, 23, 2931-2937.	4.6	39
74	High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties. Green Chemistry, 2021, 23, 1772-1781.	4.6	38
75	Toward Biobased, Biodegradable, and Smart Barrier Packaging Material: Modification of Poly(Neopentyl Glycol 2,5-Furandicarboxylate) with Succinic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 4255-4265.	3.2	37
76	Synthesis, Characterization of a Rosin-based Epoxy Monomer and its Comparison with a Petroleum-based Counterpart. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 321-329.	1.2	36
77	Origin of highly recoverable shape memory polyurethanes (SMPUs) with non-planar ring structures: a single molecule force spectroscopy investigation. Journal of Materials Chemistry A, 2014, 2, 20010-20016.	5.2	36
78	Soft segment free thermoplastic polyester elastomers with high performance. Journal of Materials Chemistry A, 2015, 3, 13637-13641.	5.2	36
79	Effects of Various 1,3-Propanediols on the Properties of Poly(propylene furandicarboxylate). ACS Sustainable Chemistry and Engineering, 2019, 7, 3282-3291.	3.2	36
80	Degradable Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets Containing a Lignin Polyurethane Photothermal Foam (LPUF) for Rapid Crude Oil Cleanup. ACS Applied Nano Materials, 2022, 5, 2848-2858.	2.4	36
81	Biodegradable Elastomer from 2,5-Furandicarboxylic Acid and ε-Caprolactone: Effect of Crystallization on Elasticity. ACS Sustainable Chemistry and Engineering, 2019, 7, 17778-17788.	3.2	34
82	Concurrent thiol–ene competitive reactions provide reprocessable, degradable and creep-resistant dynamic–permanent hybrid covalent networks. Green Chemistry, 2020, 22, 7769-7777.	4.6	34
83	Preparation of Biobased Monofunctional Compatibilizer from Cardanol To Fabricate Polylactide/Starch Blends with Superior Tensile Properties. Industrial & Engineering Chemistry Research, 2014, 53, 10653-10659.	1.8	32
84	Bio-based shape memory epoxy resin synthesized from rosin acid. Iranian Polymer Journal (English) Tj ETQq0 0 0	rgBT _{.3} /Ovei	rlogk 10 Tf 50
85	From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate). Chinese Journal of Polymer Science (English Edition), 2018, 36, 720-727.	2.0	31
86	Synthesis and Evaluation of Bio-Based Plasticizers from 5-Hydroxymethyl-2-Furancarboxylic Acid for Poly(vinyl chloride). Industrial & amp; Engineering Chemistry Research, 2020, 59, 18290-18297.	1.8	31
87	Intumescent flame retardation of melamineâ€modified montmorillonite on polyamide 6: Enhancement of condense phase and flame retardance. Polymer Engineering and Science, 2011, 51, 377-385.	1.5	30
88	Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly(ester-urethane)s and their properties as UV curable coating materials. RSC Advances, 2014, 4, 49471-49477.	1.7	30
89	Toughening polylactide by direct blending of cellulose nanocrystals and epoxidized soybean oil. Journal of Applied Polymer Science, 2019, 136, 48221.	1.3	30

	Sustainable and rapidly degradable poly(butylene carbonate- <i>co</i> -cyclohexanedicarboxylate):		
90	influence of composition on its crystallization, mechanical and barrier properties. Polymer	1.9	29
	Chemistry, 2019, 10, 1812-1822.		

#	Article	IF	CITATIONS
91	Revealing the importance of non-thermal effect to strengthen hydrolysis of cellulose by synchronous cooling assisted microwave driving. Carbohydrate Polymers, 2018, 197, 414-421.	5.1	28
92	Design of 2,5-furandicarboxylic based polyesters degraded in different environmental conditions: Comprehensive experimental and theoretical study. Journal of Hazardous Materials, 2022, 425, 127752.	6.5	28
93	Fabricating Highly Reactive Bio-based Compatibilizers of Epoxidized Citric Acid To Improve the Flexural Properties of Polylactide/Microcrystalline Cellulose Blends. Industrial & Engineering Chemistry Research, 2015, 54, 3806-3812.	1.8	27
94	A facile way to fabricate cellulose-Ag@AgCl composites with photocatalytic properties. Cellulose, 2016, 23, 3737-3745.	2.4	27
95	Non-planar ring contained polyester modifying polylactide to pursue high toughness. Composites Science and Technology, 2016, 128, 41-48.	3.8	27
96	2,5â€Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance. Journal of Applied Polymer Science, 2019, 136, 47186.	1.3	27
97	A facile preparation strategy of polycaprolactone (PCL)-based biodegradable polyurethane elastomer with a highly efficient shape memory effect. New Journal of Chemistry, 2020, 44, 658-662.	1.4	27
98	Structure and Properties of Regenerated Cellulose Fibers Based on Dissolution of Cellulose in a CO ₂ Switchable Solvent. ACS Sustainable Chemistry and Engineering, 2021, 9, 4744-4754.	3.2	27
99	Hydrolysis behavior of regenerated celluloses with different degree of polymerization under microwave radiation. Bioresource Technology, 2015, 191, 229-233.	4.8	26
100	Epoxy resins toughened with <i>in situ</i> azide–alkyne polymerized polysulfones. Journal of Applied Polymer Science, 2018, 135, 45790.	1.3	26
101	Dental Resin Monomer Enables Unique NbO ₂ /Carbon Lithiumâ€lon Battery Negative Electrode with Exceptional Performance. Advanced Functional Materials, 2019, 29, 1904961.	7.8	26
102	Enhancement of a hyperbranched charring and foaming agent on flame retardancy of polyamide 6. Polymers for Advanced Technologies, 2011, 22, 2237-2243.	1.6	25
103	A toughened PLA/Nanosilica composite obtained in the presence of epoxidized soybean oil. Journal of Applied Polymer Science, 2015, 132, .	1.3	25
104	Incorporation of 1,4-cyclohexanedicarboxylic acid into poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 tensile and elastic properties. RSC Advances, 2015, 5, 94091-94098.	Td (terep 1.7	hthalate)-b-po 24
105	Bioâ€Based Polybenzoxazine Modified Melamine Sponges for Selective Absorption of Organic Solvent in Water. Advanced Sustainable Systems, 2019, 3, 1800126.	2.7	24
106	Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS Applied Materials & Interfaces, 2020, 12, 43785-43797.	4.0	24
107	Amino acids as latent curing agents and their application in fully bio-based epoxy resins. Green Chemistry, 2021, 23, 6566-6575.	4.6	24
108	Ultraflexible Transparent Bioâ€Based Polymer Conductive Films Based on Ag Nanowires. Small, 2019, 15, e1805094.	5.2	23

#	Article	IF	CITATIONS
109	Copolyesters developed from bioâ€based 2,5â€furandicarboxylic acid: Synthesis, sequence distribution, mechanical, and barrier properties of poly(propyleneâ€ <i>co</i> â€1,4â€cyclohexanedimethylene) Tj ETQq1 1	0.78 43 14	rgBT2¦©verlock
110	Fastâ€Reprocessing, Postadjustable, Selfâ€Healing Covalent Adaptable Networks with Schiff Base and Diels–Alder Adduct. Macromolecular Rapid Communications, 2022, 43, e2100777.	2.0	23
111	Role of cis-1,4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) copolymer. RSC Advances, 2016, 6, 65889-65897.	1.7	22
112	Comparison of Hydrogenated Bisphenol A and Bisphenol A Epoxies: Curing Behavior, Thermal and Mechanical Properties, Shape Memory Properties. Macromolecular Research, 2018, 26, 529-538.	1.0	22
113	Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. Langmuir, 2020, 36, 2003-2011.	1.6	22
114	Initiating Highly Effective Hydrolysis of Regenerated Cellulose by Controlling Transition of Crystal Form with Sulfolane under Microwave Radiation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1507-1511.	3.2	21
115	Preparation of a New Type of Polyamidoamine and Its Application for Soy Flourâ€Based Adhesives. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 265-272.	0.8	19
116	Effect of 1,3,5â€ŧrialkylâ€benzenetricarboxylamide on the crystallization of poly(lactic acid). Journal of Applied Polymer Science, 2013, 130, 1328-1336.	1.3	19
117	Design and fabrication of imidazolium ion-immobilized electrospun polyurethane membranes with antibacterial activity. Journal of Materials Science, 2017, 52, 2473-2483.	1.7	19
118	Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1152-1161.	2.0	19
119	Highly efficient microwave driven assisted hydrolysis of cellulose to sugar with the utilization of ZrO2 to inhibit recrystallization of cellulose. Carbohydrate Polymers, 2020, 228, 115358.	5.1	19
120	Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1082-1091.	2.0	19
121	Dissociate transfer exchange of tandem dynamic bonds endows covalent adaptable networks with fast reprocessability and high performance. Polymer Chemistry, 2021, 12, 5217-5228.	1.9	19
122	Design of High-Barrier and Environmentally Degradable FDCA-Based Copolyesters: Experimental and Theoretical Investigation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13021-13032.	3.2	19
123	Preparation and characterization of regenerated cellulose blend films containing high amount of poly(vinyl alcohol) (PVA) in ionic liquid. Macromolecular Research, 2012, 20, 703-708.	1.0	18
124	Electrospun PVDF-Ag@AgCl porous fiber membrane: stable antifoul and antibacterial surface. Surface Innovations, 2021, 9, 156-165.	1.4	18
125	Poly(siloxane imide) Binder for Siliconâ€Based Lithiumâ€lon Battery Anodes via Rigidness/Softness Coupling. Chemistry - an Asian Journal, 2020, 15, 2674-2680.	1.7	17
126	Toughening Polylactic Acid by a Biobased Poly(Butylene 2,5-Furandicarboxylate)- <i>b</i> -Poly(Ethylene) Tj ETQ	9q0 0 0 rgl 2.6	BT /Overlock 10

Biomacromolecules, 2021, 22, 374-385.

#	Article	IF	CITATIONS
127	Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning. Carbohydrate Polymers, 2015, 123, 174-179.	5.1	16
128	Responsive behavior of regenerated cellulose in hydrolysis under microwave radiation. Bioresource Technology, 2014, 167, 69-73.	4.8	15
129	Synthesis of poly(butylene terephthalate)-poly(tetramethylene glycol) copolymers using terephthalic acid as starting material: A comparation between two synthetic strategies. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1283-1293.	2.0	15
130	Folate-conjugated dually responsive micelles for targeted anticancer drug delivery. RSC Advances, 2016, 6, 35658-35667.	1.7	15
131	Scalable Synthesis of Hierarchical Antimony/Carbon Micro-/Nanohybrid Lithium/Sodium-Ion Battery Anodes Based on Dimethacrylate Monomer. Acta Metallurgica Sinica (English Letters), 2018, 31, 910-922.	1.5	15
132	One-pot synthesis of CNC-Ag@AgCl with antifouling and antibacterial properties. Cellulose, 2019, 26, 7837-7846.	2.4	15
133	A High Performance Copolyester with "Locked―Biodegradability: Solid Stability and Controlled Degradation Enabled by Acid-Labile Acetal. ACS Sustainable Chemistry and Engineering, 2021, 9, 2280-2290.	3.2	15
134	Acid-triggered, degradable and high strength-toughness copolyesters: Comprehensive experimental and theoretical study. Journal of Hazardous Materials, 2022, 430, 128392.	6.5	15
135	Microwaveâ€Assisted Construction of Pyrrolopyridinone Ring Systems by Using an Ugi/Indole Cyclization Reaction. European Journal of Organic Chemistry, 2016, 2016, 5770-5776.	1.2	14
136	Ag@AgCl embedded on cellulose film: a stable, highly efficient and easily recyclable photocatalyst. Cellulose, 2017, 24, 4683-4689.	2.4	14
137	MnO/Metal/Carbon Nanohybrid Lithium″on Battery Anode With Enhanced Electrochemical Performance: Universal Facile Scalable Synthesis and Fundamental Understanding. Advanced Materials Interfaces, 2019, 6, 1900335.	1.9	14
138	Facile synthesis of hemiacetal ester-based dynamic covalent polymer networks combining fast reprocessability and high performance. Green Chemistry, 2021, 23, 9061-9070.	4.6	14
139	Role of Nickel Nanoparticles in Highâ€Performance TiO ₂ /Ni/Carbon Nanohybrid Lithium/Sodiumâ€lon Battery Anodes. Chemistry - an Asian Journal, 2019, 14, 1557-1569.	1.7	13
140	Nucleation and crystallization of poly(propylene 2,5-furan dicarboxylate) by direct blending of microcrystalline cellulose: improved tensile and barrier properties. Cellulose, 2020, 27, 9423-9436.	2.4	13
141	Synergistic Effect between a Novel Hyperbranched Flame Retardant and Melamine Pyrophosphate on the Char Forming of Polyamide 6. Polymer-Plastics Technology and Engineering, 2010, 49, 1489-1497.	1.9	12
142	Low dielectric constant and organosolubility of polyimides derived from unsymmetric phthalic-thioether-naphthalic dianhydrides. Journal of Materials Science, 2011, 46, 1512-1522.	1.7	12
143	Synthesis of multifunctional monomers from rosin for the properties enhancement of soybean-oil based thermosets. Science China Technological Sciences, 2017, 60, 1332-1338.	2.0	12
144	Preparation of Non-Planar-Ring Epoxy Thermosets Combining Ultra-Strong Shape Memory Effects and High Performance. Macromolecular Research, 2020, 28, 480-493.	1.0	12

#	Article	IF	CITATIONS
145	Conductive vitrimer nanocomposites enable advanced and recyclable thermo-sensitive materials. Journal of Materials Chemistry C, 2020, 8, 11681-11686.	2.7	12
146	Utilization of Hydroxyl-Enriched Glucose-Based Carbonaceous Sphere (HEGCS) as a Catalytic Accelerator to Enhance the Hydrolysis of Cellulose to Sugar. ACS Applied Materials & Interfaces, 2020, 12, 25693-25699.	4.0	12
147	The Consequence of Epoxidized Soybean Oil in the Toughening of Polylactide and Micro-Fibrillated Cellulose Blend. Polymer Science - Series A, 2019, 61, 832-846.	0.4	11
148	High molecular weight poly(butylene terephthalateâ€coâ€butylene 2,5â€furan dicarboxylate) copolyesters: From synthesis to thermomechanical and barrier properties. Journal of Applied Polymer Science, 2020, 137, 49365.	1.3	11
149	Waste Cellulose Fibers Reinforced Polylactide Toughened by Direct Blending of Epoxidized Soybean Oil. Fibers and Polymers, 2020, 21, 2949-2961.	1.1	11
150	Fully Bio-based Micro-cellulose Incorporated Poly(butylene 2,5-furandicarboxylate) Transparent Composites: Preparation and Characterization. Fibers and Polymers, 2020, 21, 1550-1559.	1.1	10
151	SnO ₂ /Sn/Carbon nanohybrid lithiumâ€ion battery anode with high reversible capacity and excellent cyclic stability. Nano Select, 2021, 2, 642-653.	1.9	10
152	Synthesis of epoxy curing agents containing different ring structures and properties investigation of the cured resins. Journal of Applied Polymer Science, 2016, 133, .	1.3	9
153	Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer. Chinese Journal of Polymer Science (English) Tj ETQq1	. മ. 78431	49rgBT /Ov€
154	Completely amorphous high thermal resistant copolyesters from bioâ€based 2, <scp>5â€furandicarboxylic</scp> acid. Journal of Applied Polymer Science, 2021, 138, 50627.	1.3	9
155	Study on Thermal Properties and Crystallization Behavior of Blends of Poly(phenylene) Tj ETQq1 1 0.784314 rgBT	/Qyerlock	10 Tf 50 34
156	The study of regenerated cellulose films toughened with thermoplastic polyurethane elastomers. Cellulose, 2012, 19, 121-126.	2.4	8
157	Controlling the status of corn cellulose solutions by ethanol to define fiber morphology during electrospinning. Cellulose, 2017, 24, 863-870.	2.4	8
158	Highly Cross-Linked and Stable Shape-Memory Polyurethanes Containing a Planar Ring Chain Extender. ACS Applied Polymer Materials, 2020, 2, 5259-5268.	2.0	8
159	Preparation of cellulose-based fluorescent materials as coating pigment by use of DMSO/DBU/CO2 system. Cellulose, 2021, 28, 10373-10384.	2.4	8
160	Research Progress on Vanillin-based Thermosets. Current Green Chemistry, 2018, 5, 138-149.	0.7	8
161	Effect of high content filling jute fiber with large aspect ratio on structure and properties of <scp>PLA</scp> composite. Polymer Composites, 2022, 43, 1429-1437.	2.3	8

162 Synthesis and shape memory property of segmented poly(ester urethane) with poly(butylene) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 62

#	Article	IF	CITATIONS
163	Manipulating the Properties of Poly(1,4 yclohexylenedimethylene Terephthalate) (PCT) Just by Tuning Steric Configuration of 1.4 yclohexanedimethanol (CHDM). Macromolecular Chemistry and Physics, 2018, 219, 1800172.	1.1	7
164	Effect of Adsorption of ZrO ₂ in Catalysts on the Efficiency of Hydrolysisof Cellulose to Sugar in Aqueous System under Microwave Radiation. Chinese Journal of Chemistry, 2020, 38, 399-405.	2.6	7
165	Carbon-emcoating architecture boosts lithium storage of Nb2O5. Science China Materials, 2021, 64, 1071-1086.	3.5	7
166	In situ controllable synthesis of Ag@AgCl in cellulose film and its effect on anti-fouling properties. Cellulose, 2018, 25, 5175-5184.	2.4	6
167	Hydroxyl-Enriched Core/Shell Carbon Nanotubes for Catalytic Hydrolysis of Regenerated Cellulose to Glucose. ACS Applied Nano Materials, 2022, 5, 5364-5372.	2.4	6
168	Effect of aliphatic diacyl adipic dihydrazides on the crystallization of poly(lactic acid). Journal of Applied Polymer Science, 2015, 132, .	1.3	5
169	The role of a biobased epoxy monomer in the preparation of diglycidyl ether of bisphenol A/MWCNT composites. Polymer Composites, 2017, 38, 1640-1645.	2.3	5
170	Preparation of native cellulose-AgCl fiber with antimicrobial activity through one-step electrospinning. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 284-292.	1.9	5
171	Synthesis of copolyesters with bio-based lauric diacid: structure and physico-mechanical studies. RSC Advances, 2017, 7, 55418-55426.	1.7	5
172	Cross-Linking of polystyrene by friedel-crafts chemistry: Multifunctional additives. Journal of Vinyl and Additive Technology, 2000, 6, 205-210.	1.8	4
173	Synthesis of polyurethane containing carbon–carbon double bonds to prepare functionalizable ultrafine fibers <i>via</i> electrospinning. Polymer Chemistry, 2015, 6, 3858-3864.	1.9	4
174	Evaluation of Electrospinnability of Celluloses Derived from Different Biomass Resources. Fibers and Polymers, 2018, 19, 1128-1134.	1.1	4
175	Fabrication of natural cellulose films with pattern by viscosity regulation of its solution. Cellulose, 2020, 27, 3947-3956.	2.4	4
176	In Situ Incorporation of Super‣mall Metallic High Capacity Nanoparticles and Mesoporous Structures for Highâ€Performance TiO ₂ /SnO ₂ /Sn/Carbon Nanohybrid Lithiumâ€ion Battery Anodes. Energy Technology, 2020, 8, 2000034.	1.8	4
177	<i>SusMat</i> : Materials innovation for sustainable development. SusMat, 2021, 1, 2-3.	7.8	4
178	Design and synthesis of <scp>HFCA</scp> â€based plasticizers with asymmetrical alkyl chains for poly(vinyl chloride). Journal of Applied Polymer Science, 2021, 138, 51410.	1.3	4
179	Recent Studies on Thermal Stability and Flame Retardancy of Polystyrene-Nanocomposites. ACS Symposium Series, 2001, , 24-33.	0.5	3
180	A parallel approach to direct resolution of albuterol. Science Bulletin, 2010, 55, 2814-2816.	1.7	3

#	Article	IF	CITATIONS
181	Identification of side chain effect as an important factor influencing the secondary relaxation of polyesters containing cyclohexylene ring. Journal of Materials Science, 2018, 53, 6239-6250.	1.7	3
182	High thermal resistance amorphous copolyesters synthesized from bioâ€based 2,5â€furandicarboxylic acid. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
183	Controlling the stereostructure of nonâ€planar ring to induce the transition from plastic to elastomer in poly(butylene adipateâ€coâ€1,4â€cyclohexane dicarboxylate) and implement of polylactic acid toughness. Polymer Engineering and Science, 2017, 57, 1277-1284.	1.5	2
184	Isothermal Crystallization Kinetics and Crystalline Morphologies of Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 (English Edition), 2018, 36, 756-764.	Tf 50 627 2.0	' Td (adipate 2
185	Synthesis of recoverable thermosensitive Fe3O4 hybrid microgels with controllable catalytic activity. New Journal of Chemistry, 2020, 44, 19440-19444.	1.4	2
186	Epoxy Resin Enables Facile Scalable Synthesis of CuO/C Nanohybrid Lithiumâ€ion Battery Anode with Enhanced Electrochemical Performance. ChemistrySelect, 2020, 5, 5479-5487.	0.7	2
187	Ultrafine SnO ₂ /Sn Nanoparticles Embedded into an <i>In Situ</i> Generated Meso-/Macroporous Carbon Matrix with a Tunable Pore Size. Langmuir, 2022, 38, 1689-1697.	1.6	2
188	Porous silicon derived from 130Ânm Stöber silica as lithiumâ€ion battery anode. Nano Select, 2021, 2, 1554-1565.	1.9	0