
Montserrat Mari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5322923/publications.pdf Version: 2024-02-01

MONTSEDDAT MADI

#	Article	IF	CITATIONS
1	Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers, 2022, 14, 621.	3.7	34
2	Mitochondrial Oxidative and Nitrosative Stress as a Therapeutic Target in Diseases. Antioxidants, 2021, 10, 314.	5.1	8
3	Growth Arrest-Specific Factor 6 (GAS6) Is Increased in COVID-19 Patients and Predicts Clinical Outcome. Biomedicines, 2021, 9, 335.	3.2	24
4	Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 15.	10.8	37
5	Antioxidants Threaten Multikinase Inhibitor Efficacy against Liver Cancer by Blocking Mitochondrial Reactive Oxygen Species. Antioxidants, 2021, 10, 1336.	5.1	11
6	A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 349-368.	4.5	39
7	Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370, .	12.6	245
8	Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants, 2020, 9, 909.	5.1	89
9	IGFBP-3: So Much More Than an IGF1/2 Binding Protein. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 643-644.	4.5	1
10	Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. International Journal of Molecular Sciences, 2020, 21, 3858.	4.1	90
11	Regorafenib Alteration of the BCL-xL/MCL-1 Ratio Provides a Therapeutic Opportunity for BH3-Mimetics in Hepatocellular Carcinoma Models. Cancers, 2020, 12, 332.	3.7	13
12	Role of Vitamin K-Dependent Factors Protein S and GAS6 and TAM Receptors in SARS-CoV-2 Infection and COVID-19-Associated Immunothrombosis. Cells, 2020, 9, 2186.	4.1	34
13	AXL inhibition prevents NAFLD progression in mice with soluble AXL as marker of the NAFLD to NASH transition. Journal of Hepatology, 2020, 73, S655-S656.	3.7	0
14	Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress. Redox Biology, 2019, 26, 101283.	9.0	27
15	A Nutraceutical Rich in Docosahexaenoic Acid Improves Portal Hypertension in a Preclinical Model of Advanced Chronic Liver Disease. Nutrients, 2019, 11, 2358.	4.1	13
16	Recent Insights into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	102
17	Antiapoptotic BCL-2 proteins determine sorafenib/regorafenib resistance and BH3-mimetic efficacy in hepatocellular carcinoma. Oncotarget, 2018, 9, 16701-16717.	1.8	44
18	Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Frontiers in Immunology, 2018, 9, 391.	4.8	24

MONTSERRAT MARI

#	Article	IF	CITATIONS
19	Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy, 2018, 14, 1129-1154.	9.1	97
20	Bone morphogenetic protein-9/activin-like kinase 1 axis a new target for hepatic regeneration and fibrosis treatment in liver injury. Hepatobiliary Surgery and Nutrition, 2017, 6, 414-416.	1.5	1
21	Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death and Disease, 2016, 7, e2464-e2464.	6.3	42
22	Genetic and clinical data reinforce the role of GAS6 and TAM receptors in liver fibrosis. Journal of Hepatology, 2016, 64, 983-984.	3.7	7
23	Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget, 2016, 7, 8253-8267.	1.8	40
24	Angiogenin Secretion From Hepatoma Cells Activates Hepatic Stellate Cells To Amplify A Self-Sustained Cycle Promoting Liver Cancer. Scientific Reports, 2015, 5, 7916.	3.3	42
25	Oxidative Stress in Nonalcoholic Fatty Liver Disease. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 279-308.	0.4	1
26	lleal <scp>FGF</scp> 15 contributes to fibrosisâ€associated hepatocellular carcinoma development. International Journal of Cancer, 2015, 136, 2469-2475.	5.1	79
27	Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. Journal of Hepatology, 2015, 63, 670-678.	3.7	104
28	Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biology, 2014, 3, 100-108.	9.0	44
29	Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence?. Free Radical Research, 2013, 47, 854-868.	3.3	82
30	Mitochondrial glutathione: Features, regulation and role in disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3317-3328.	2.4	160
31	ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. Journal of Hepatology, 2013, 59, 805-813.	3.7	89
32	Impaired liver regeneration in Ldlrâ^'/â^' mice is associated with an altered hepatic profile of cytokines, growth factors, and lipids. Journal of Hepatology, 2013, 59, 731-737.	3.7	18
33	Cathepsin B Overexpression Due to Acid Sphingomyelinase Ablation Promotes Liver Fibrosis in Niemann-Pick Disease. Journal of Biological Chemistry, 2012, 287, 1178-1188.	3.4	45
34	Hepatocarcinogenesis and Ceramide/Cholesterol Metabolism. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 364-375.	1.7	30
35	Metabolic Therapy: Lessons from Liver Diseases. Current Pharmaceutical Design, 2011, 17, 3933-3944.	1.9	19
36	Mitochondrial Cholesterol: A Connection Between Caveolin, Metabolism, and Disease. Traffic, 2011, 12, 1483-1489.	2.7	45

Montserrat Mari

#	Article	IF	CITATIONS
37	Caveolin-1 Deficiency Causes Cholesterol-Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility. Current Biology, 2011, 21, 681-686.	3.9	175
38	Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology, 2011, 54, 319-327.	7.3	107
39	Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1217-1224.	1.0	90
40	Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in humans. Hepatology, 2010, 51, 974-985.	7.3	141
41	Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury. Hepatology, 2010, 52, 1371-1379.	7.3	70
42	Alcohol, Signaling, and ECM Turnover. Alcoholism: Clinical and Experimental Research, 2010, 34, 4-18.	2.4	33
43	Oxidative Stress and Altered Mitochondrial Function in Neurodegenerative Diseases: Lessons From Mouse Models. CNS and Neurological Disorders - Drug Targets, 2010, 9, 439-454.	1.4	79
44	Acidic Sphingomyelinase Controls Hepatic Stellate Cell Activation and in Vivo Liver Fibrogenesis. American Journal of Pathology, 2010, 177, 1214-1224.	3.8	78
45	Redox Control of Liver Function in Health and Disease. Antioxidants and Redox Signaling, 2010, 12, 1295-1331.	5.4	155
46	Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential. Hepatology, 2009, 49, 1297-1307.	7.3	80
47	Mitochondrial Glutathione, a Key Survival Antioxidant. Antioxidants and Redox Signaling, 2009, 11, 2685-2700.	5.4	777
48	Reactive Oxygen Species Mediate Liver Injury Through Parenchymal Nuclear Factor-κB Inactivation in Prolonged Ischemia/Reperfusion. American Journal of Pathology, 2009, 174, 1776-1785.	3.8	82
49	Mechanism of Mitochondrial Glutathione-Dependent Hepatocellular Susceptibility to TNF Despite NF-κB Activation. Gastroenterology, 2008, 134, 1507-1520.	1.3	96
50	Bradykinin Attenuates Hepatocellular Damage and Fibrosis in Rats With Chronic Liver Injury. Gastroenterology, 2007, 133, 2019-2028.	1.3	41
51	Sphingolipid signalling and liver diseases. Liver International, 2007, 27, 440-450.	3.9	78
52	Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism, 2006, 4, 185-198.	16.2	537
53	Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology, 2006, 44, 561-572.	7.3	112
54	Ceramide, Tumor Necrosis Factor and Alcohol-Induced Liver Disease. Alcoholism: Clinical and Experimental Research, 2005, 29, 158S-161S.	2.4	18

Montserrat Mari

#	Article	IF	CITATIONS
55	Critical Role of Mitochondrial Glutathione in the Survival of Hepatocytes during Hypoxia. Journal of Biological Chemistry, 2005, 280, 3224-3232.	3.4	93
56	Mitochondrial permeability transition induced by reactive oxygen species is independent of cholesterol-regulated membrane fluidity. FEBS Letters, 2004, 560, 63-68.	2.8	36
57	Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. Journal of Clinical Investigation, 2004, 113, 895-904.	8.2	32
58	Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. Journal of Clinical Investigation, 2004, 113, 895-904.	8.2	61
59	Glycosphingolipids and mitochondria: Role in apoptosis and disease. Glycoconjugate Journal, 2003, 20, 579-588.	2.7	70
60	Cytochrome P450 2E1 responsiveness in the promoter of glutamate-cysteine ligase catalytic subunit. Hepatology, 2003, 37, 96-106.	7.3	31
61	Cholesterol Impairs the Adenine Nucleotide Translocator-mediated Mitochondrial Permeability Transition through Altered Membrane Fluidity. Journal of Biological Chemistry, 2003, 278, 33928-33935.	3.4	120
62	Defective TNF-α–mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. Journal of Clinical Investigation, 2003, 111, 197-208.	8.2	200
63	Defective TNF-α–mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. Journal of Clinical Investigation, 2003, 111, 197-208.	8.2	32
64	Adenovirus-Mediated Overexpression of Catalase in the Cytosolic or Mitochondrial Compartment Protects against Toxicity Caused by Glutathione Depletion in HepG2 Cells Expressing CYP2E1. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 111-118.	2.5	22
65	Divergent role of ceramide generated by exogenous sphingomyelinases on NF- 12 B activation and apoptosis in human colon HT-29 cells. FEBS Letters, 2002, 526, 15-20.	2.8	22
66	Toxicity by pyruvate in HepG2 cells depleted of glutathione: role of mitochondria. Free Radical Biology and Medicine, 2002, 32, 73-83.	2.9	31
67	CYP2E1-dependent toxicity and up-regulation of antioxidant genes. Journal of Biomedical Science, 2001, 8, 52-58.	7.0	49
68	Induction of catalase, alpha, and microsomal glutathione S-transferase in CYP2E1 overexpressing HepG2 cells and protection against short-term oxidative stress. Hepatology, 2001, 33, 652-661.	7.3	123
69	CYP2E1-dependent toxicity and oxidative stress in HepG2 cells,. Free Radical Biology and Medicine, 2001, 31, 1539-1543.	2.9	190
70	CYP2E1-Dependent Toxicity and Up-Regulation of Antioxidant Genes. Journal of Biomedical Science, 2001, 8, 52-58.	7.0	7
71	Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology, 2000, 32, 56-65.	7.3	55
72	CYP2E1 Overexpression in HepG2 Cells Induces Glutathione Synthesis by Transcriptional Activation of Î ³ -Glutamylcysteine Synthetase. Journal of Biological Chemistry, 2000, 275, 15563-15571.	3.4	112

#	Article	IF	CITATIONS
73	Oxidative stress: Role of mitochondria and protection by glutathione. BioFactors, 1998, 8, 7-11.	5.4	170
74	Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology, 1998, 115, 1541-1551.	1.3	349
75	Tumor Necrosis Factor Increases Hepatocellular Clutathione by Transcriptional Regulation of the Heavy Subunit Chain of γ-Clutamylcysteine Synthetase. Journal of Biological Chemistry, 1997, 272, 30371-30379.	3.4	133
76	Direct Effect of Ceramide on the Mitochondrial Electron Transport Chain Leads to Generation of Reactive Oxygen Species. Journal of Biological Chemistry, 1997, 272, 11369-11377.	3.4	727