Jaegeun Noh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5322665/publications.pdf

Version: 2024-02-01

		159358	168136
119	3,190	30	53
papers	citations	h-index	g-index
120	120	120	3794
120	120	120	37.77
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Formation and superlattice of long-range and highly ordered alicyclic selenolate monolayers on Au(1) Tj ETQq1 1	0.784314	4 rgBT /Ove <mark>rlo</mark>
2	Solvent- and Light-Sensitive AIEE-Active Azo Dye: From Spherical to 1D and 2D Assemblies. International Journal of Molecular Sciences, 2022, 23, 965.	1.8	3
3	Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes. Nanomaterials, 2022, 12, 2361.	1.9	5
4	Steric Effects on the Formation of <scp>Selfâ€Assembled</scp> Monolayers of Alicyclic Thiol Derivatives on Au(111). Bulletin of the Korean Chemical Society, 2021, 42, 1259-1264.	1.0	6
5	Comparative study of structural order, thermal desorption behavior, and work function change of self-assembled monolayers of pentafluorobenzenethiols and tetrafluorobenzenethiols on Au(1 1 1). Applied Surface Science, 2021, 555, 149671.	3.1	15
6	Self-assembly using a retro Diels-Alder reaction. Nature Communications, 2021, 12, 4207.	5.8	19
7	Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye. Journal of Industrial and Engineering Chemistry, 2021, 100, 126-133.	2.9	26
8	Selfâ€Assembled Monolayers of Alkanethioacetates on Au(111) in Ammonium Hydroxide Solution. Bulletin of the Korean Chemical Society, 2021, 42, 252-257.	1.0	3
9	Molecular <scp>Selfâ€Assembly </scp> of Phenylselenyl Chloride on a Au(111) Surface. Bulletin of the Korean Chemical Society, 2020, 41, 1048-1051.	1.0	4
10	Formation and Surface Structures of Highly Ordered Self-Assembled Monolayers of Alkyl Selenocyanates on Au(111) via Ambient-Pressure Vapor Deposition. Journal of Physical Chemistry C, 2020, 124, 26730-26740.	1.5	10
11	Light-directed trapping of metastable intermediates in a self-assembly process. Nature Communications, 2020, 11, 6260.	5.8	15
12	Scanning tunneling microscopy study on phase behavior of self-assembled monolayers formed by coadsorption of octanethiol and octyl thiocyanate on $Au(111)$. Thin Solid Films, 2020, 707, 138100.	0.8	7
13	Growth Processes and Reductive Desorption Behaviors of 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2020, 20, 4955-4960.	0.9	3
14	Highly Efficient Adsorption of Anionic Dye on Acid-Treated Halloysite Nanotubes. Journal of Nanoscience and Nanotechnology, 2020, 20, 5024-5027.	0.9	4
15	Formation of long-range-ordered self-assembled monolayers of dodecyl thiocyanates on Au(111) via ambient-pressure vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123969.	2.3	17
16	Thermochromic Polydiacetylene Nanotube from Amphiphilic Macrocyclic Diacetylene in Aqueous Solution. Macromolecules, 2019, 52, 4405-4411.	2.2	23
17	Improvement of the Thermal Stability of Self-Assembled Monolayers of Isocyanide Derivatives on Gold. Journal of Physical Chemistry C, 2019, 123, 13681-13686.	1.5	13
18	Solvent Effect on the Formation of Octaneselenocyanate Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2019, 19, 4795-4798.	0.9	4

#	Article	IF	CITATIONS
19	Formation of a Highlyâ€ordered Thiophene Monolayer on Au(111) via Vapor Phase Deposition. Bulletin of the Korean Chemical Society, 2019, 40, 619-620.	1.0	6
20	Formation and Structure of Highly Ordered Self-Assembled Monolayers by Adsorption of Acetyl-Protected Conjugated Thiols on Au(111) in Tetrabutylammonium Cyanide Solution. Journal of Physical Chemistry C, 2019, 123, 9096-9104.	1.5	16
21	Displacement Processes of 1-Adamanetanethiol Self-Assembled Monolayers on Au(111) by 1-Hexanethiol. Journal of Nanoscience and Nanotechnology, 2019, 19, 4732-4735.	0.9	3
22	Negative Thermal Effects on the Structural Order of Methoxy–terminated Mono(Ethylene Glycol) Ethanethiol Selfâ€assembled Monolayers on Au(111). Bulletin of the Korean Chemical Society, 2019, 40, 299-300.	1.0	4
23	Effect of Immersion Time on the Structure of Octanethiol Selfâ€Assembled Monolayers on Au(111) at an Elevated Solution Temperature. Bulletin of the Korean Chemical Society, 2019, 40, 1152-1153.	1.0	8
24	Anisotropic growth mechanism of tungsten diselenide domains using chemical vapor deposition method. Applied Surface Science, 2018, 432, 170-175.	3.1	7
25	Well-Ordered Domains of 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111) Guided by a Displacement Reaction. Journal of Nanoscience and Nanotechnology, 2018, 18, 7053-7057.	0.9	2
26	Chromogenic Tubular Polydiacetylenes from Topochemical Polymerization of Self-Assembled Macrocyclic Diacetylenes. Macromolecules, 2017, 50, 900-913.	2.2	56
27	Comparative study for electrical transport characteristics of self-assembled monolayers formed by benzenethiol, cyclohexanethiol, and adamantanethiol. Current Applied Physics, 2017, 17, 1459-1464.	1.1	8
28	Unique Mixed Phases and Structures of Self-Assembled Monolayers on Au(111) Derived from Methoxy-terminated Mono(ethylene glycol)ethanethiols. Journal of Physical Chemistry C, 2017, 121, 18021-18029.	1.5	15
29	Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Current Applied Physics, 2017, 17, 137-145.	1.1	76
30	Phaseâ€separated Nanodomains Formed by Coadsorption of Alicyclic and Aromatic Thiols on Au(111). Bulletin of the Korean Chemical Society, 2017, 38, 1381-1382.	1.0	4
31	Formation and Structural Changes of 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2017, 17, 5597-5600.	0.9	2
32	Standing-Up Phase of Hexanedithiol Self-Assembled Monolayers on Au(111) Induced by Displacement Reaction. Journal of Nanoscience and Nanotechnology, 2017, 17, 5780-5783.	0.9	2
33	Effect of Solution Concentration on the Formation of Ordered Domains in Pentachlorobenzenethiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2016, 16, 6360-6363.	0.9	1
34	Comparative Study for Displacement of Cyclohexanethiolate and Cyclohaxaneselenolate Self-Assembled Monolayers on Au(111) by Octanethiols. Journal of Nanoscience and Nanotechnology, 2016, 16, 8508-8512.	0.9	1
35	Striped Phase of 3-Hexylthiophene Self-Assembled Monolayers on Au(111) Formed by Vapor Phase Deposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 2792-2795.	0.9	1
36	Structural Stability and Phase Transitions of Octanethiol Self-Assembled Monolayers on Au(111) in Ultrahigh Vacuum. Journal of Nanoscience and Nanotechnology, 2016, 16, 6388-6392.	0.9	3

#	Article	IF	CITATIONS
37	Anatomy of high recyclability of graphene oxide based palladium nanocomposites in the Sonogashira reaction: On the nature of the catalyst deactivation. Materials Express, 2016, 6, 61-68.	0.2	12
38	Formation of Ordered 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111) from Vapor Phase Deposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 2800-2803.	0.9	7
39	Thermal curing of a self-assembled monolayer at the nanoscale. Nanoscale, 2016, 8, 1133-1139.	2.8	7
40	Formation and Structure of Self-Assembled Monolayers by Adsorption of Octaneselenocyanate on Au(111). Journal of Nanoscience and Nanotechnology, 2016, 16, 8610-8613.	0.9	1
41	Ripple-Free Graphene Sheets on Alkanethiol Self-Assembled Monolayers Provided from Unzipped Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2015, 15, 1203-1208.	0.9	O
42	Enhancement of the Luminance Efficiency in Organic Light-Emitting Devices with <i>p</i> -Substituted Phenylphosphonic-Acid Self-Assembled Monolayers. Journal of Nanoscience and Nanotechnology, 2015, 15, 5062-5065.	0.9	2
43	Structural Investigation of 4-Methylbenzenethiol Self-Assembled Monolayers on Au(111) by Scanning Tunneling Microscopy. Bulletin of the Korean Chemical Society, 2014, 35, 1275-1276.	1.0	3
44	A new arene–Ru based supramolecular coordination complex for efficient binding and selective sensing of green fluorescent protein. Dalton Transactions, 2014, 43, 6032-6040.	1.6	37
45	Surface Structure, Adsorption, and Thermal Desorption Behaviors of Methaneselenolate Monolayers on Au(111) from Dimethyl Diselenides. Journal of Physical Chemistry C, 2014, 118, 8322-8330.	1.5	30
46	Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers. Journal of Colloid and Interface Science, 2014, 419, 39-45.	5.0	13
47	Experimental and theoretical investigation of fluorine substituted LiFe0.4Mn0.6PO4 as cathode material for lithium rechargeable batteries. Solid State Ionics, 2014, 260, 2-7.	1.3	27
48	Formation and Structure of Ordered Pentachlorobenzenethiol Self-Assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy. Journal of Nanoscience and Nanotechnology, 2014, 14, 5054-5058.	0.9	2
49	Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au(111). Physical Chemistry Chemical Physics, 2013, 15, 3609.	1.3	29
50	Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(1 1 1) in ultrahigh vacuum at room temperature. Journal of Colloid and Interface Science, 2013, 394, 522-529.	5.0	43
51	Enhancement of the Luminance Efficiency due to an Embedded Self-Assembled Monolayer in Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2013, 52, 11NK01.	0.8	3
52	Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on $Au(111)$ Surface. Bulletin of the Korean Chemical Society, 2013, 34, 1383-1387.	1.0	12
53	Unique Ordered Domains of Biphenylthiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2012, 12, 557-562.	0.9	13
54	An Alkyl Spacer Effect on the Structure of 4-Fluorobenzenethiol and 4-Fluorobenzenemethanethiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2012, 12, 4274-4278.	0.9	6

#	Article	IF	Citations
55	Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers: Cu, Ag, and Au. Journal of Physical Chemistry C, 2012, 116, 17586-17593.	1.5	32
56	Adsorption and thermal decomposition of 2-octylthieno [3,4-b] thiophene on Au(1 11). Journal of Colloid and Interface Science, 2012, 384, 143-148.	5.0	2
57	Structural Transitions of Octanethiol Self-Assembled Monolayers on Gold Nanoplates after Mild Thermal Annealing. Journal of Physical Chemistry C, 2011, 115, 5868-5874.	1.5	32
58	Molecular-Scale Investigation of Tolane Disulfide Self-Assembled Monolayers on Au(111) Using Scanning Tunneling Microscopy. Journal of Nanoscience and Nanotechnology, 2011, 11, 4333-4337.	0.9	1
59	Enhanced Photocurrent Generation of Binary Self-Assembled Monolayers of Di-(3-aminopropyl)-Viologen and Methylviologen on Indium Tin Oxide. Journal of Nanoscience and Nanotechnology, 2011, 11, 4389-4393.	0.9	0
60	Self-assembled monolayers of benzenethiol and benzenemethanethiol on Au(111): Influence of an alkyl spacer on the structure and thermal desorption behavior. Journal of Colloid and Interface Science, 2010, 342, 513-517.	5.0	46
61	Two-dimensional ordering of pentafluorobenzenethiol self-assembled monolayers on Au(1 11) prepared by ambient-pressure vapor deposition. Ultramicroscopy, 2010, 110, 666-669.	0.8	5
62	Formation and Superlattice of Long-Range-Ordered Self-Assembled Monolayers of Pentafluorobenzenethiols on Au(111). Langmuir, 2010, 26, 2983-2985.	1.6	47
63	Formation of large ordered domains in benzenethiol self-assembled monolayers on Au(111) observed by scanning tunneling microscopy. Ultramicroscopy, 2009, 109, 1011-1014.	0.8	41
64	Comparison of near-infrared and Raman spectroscopy for the determination of the density of polyethylene pellets. Analytica Chimica Acta, 2009, 632, 122-127.	2.6	19
65	Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. Journal of Colloid and Interface Science, 2009, 335, 34-39.	5.0	204
66	Adsorption changes of cyclohexyl isothiocyanate on gold surfaces. Journal of Colloid and Interface Science, 2009, 336, 648-653.	5.0	14
67	Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive. Electrochemistry Communications, 2009, 11, 1900-1903.	2.3	87
68	In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity. Synthetic Metals, 2009, 159, 1934-1939.	2.1	201
69	Molecular-Scale Investigation of Structural Changes in Cyclohexanethiol Self-Assembled Monolayers on Au(111). Journal of Nanoscience and Nanotechnology, 2009, 9, 7085-9.	0.9	0
70	Statistical Analysis of Metal-Molecule Contacts in Alkyl Molecular Junctions: Sulfur versus Selenium End-Group. Journal of Nanoscience and Nanotechnology, 2009, 9, 7012-5.	0.9	3
71	Adsorption states and thermal desorption behaviors of thiophene derivative self-assembled monolayers on Au(111). Surface Science, 2008, 602, 3291-3296.	0.8	24
72	Steric effects on adsorption and desorption behaviors of alkanethiol self-assembled monolayers on Au(111). Chemical Physics Letters, 2008, 462, 209-212.	1,2	31

#	Article	IF	Citations
73	Characterization of mixed self-assembled monolayers for immobilization of streptavidin using chemical force microscopy. Ultramicroscopy, 2008, 108, 1140-1143.	0.8	10
74	Fast displacement and structural transition of cyclohexanethiol self-assembled monolayers by octanethiols on Au (111). Ultramicroscopy, 2008, 108, 1311-1314.	0.8	20
75	Molecular-scale investigation of octanethiol self-assembled monolayers on Au(111) prepared by solution and vapor deposition at high temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 324-327.	2.3	15
76	Control of two-dimensional structure of tolanethioacetate self-assembled monolayers on Au(111). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 608-611.	2.3	9
77	Analysis of a non-labeling protein array on biotin modified gold surfaces using atomic force microscopy and surface plasmon resonance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 541-544.	2.3	13
78	Formation of Ordered Self-Assembled Monolayers by Adsorption of Octylthiocyanates on Au(111). Langmuir, 2008, 24, 91-96.	1.6	48
79	Two-dimensional ordering of benzenethiol self-assembled monolayers guided by displacement of cyclohexanethiols on $Au(111)$. Chemical Communications, 2008, , 5197.	2.2	39
80	Structural Effect on Formation of Alkylsilane Self-Assembled Monolayers on Indium Tin Oxide Surface. Molecular Crystals and Liquid Crystals, 2008, 492, 165/[529]-171/[535].	0.4	2
81	Structural, Optical, and Electronic Properties of Self-Assembled Di-(3-diaminopropyl)-viologen on Indium Tin Oxide Electrode Surfaces. Journal of Physical Chemistry C, 2008, 112, 18178-18182.	1.5	8
82	Growth behavior of oxide nanostructures by electrical and thermal conductivities of substrate in atomic force microscope nano-oxidation. Journal of Applied Physics, 2007, 101, 044905.	1.1	5
83	A New Superlattice of Cyclohexanethiol Self-assembled Monolayers on Au(111) Formed at a Low Solution Temperature. Chemistry Letters, 2007, 36, 390-391.	0.7	7
84	Feasibility of a Wide Area Illumination Scheme for Reliable Raman Measurement of Petroleum Products. Applied Spectroscopy, 2007, 61, 686-693.	1.2	10
85	Two-dimensional alignment of imogolite on a solid surface. Chemical Communications, 2007, , 2917.	2.2	27
86	Formation and Domain Structure of Self-Assembled Monolayers by Adsorption of Tetrahydrothiophene on Au(111). Journal of Physical Chemistry C, 2007, 111, 2691-2695.	1.5	44
87	Temporal Stability of Thiophene Self-Assembled Monolayers on Au(111). Molecular Crystals and Liquid Crystals, 2007, 464, 205/[787]-209/[791].	0.4	1
88	Unique domain structure of π-conjugated tolanethioacetate self-assembled monolayers on Au(111). Ultramicroscopy, 2007, 107, 1000-1003.	0.8	6
89	Abnormal adsorption behavior of dimethyl disulfide on gold surfaces. Current Applied Physics, 2007, 7, 605-610.	1.1	28
90	Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy. Analytica Chimica Acta, 2007, 593, 46-53.	2.6	55

#	Article	IF	Citations
91	Direct, non-destructive quantitative measurement of an active pharmaceutical ingredient in an intact capsule formulation using Raman spectroscopy. Analytica Chimica Acta, 2007, 598, 280-285.	2.6	50
92	Conformational changes of cyclohexanethiol adsorbed on gold surfaces. Surface Science, 2007, 601, 3196-3201.	0.8	19
93	Surface Structure and Interface Dynamics of Alkanethiol Self-Assembled Monolayers on Au(111). Journal of Physical Chemistry B, 2006, 110, 2793-2797.	1.2	105
94	Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid Films, 2006, 510, 305-310.	0.8	132
95	Surface Structures and Adsorption States of Self-Assembled Monolayers Formed by Various COOH-Terminated Alkanethiols on Au(111). Japanese Journal of Applied Physics, 2006, 45, 405-408.	0.8	11
96	Time-Dependent Phase Transition of Self-Assembled Monolayers Formed by Thioacetyl-Terminated Tolanes on Au(111). Japanese Journal of Applied Physics, 2006, 45, 5906-5910.	0.8	19
97	Chain length dependence of adsorption structure of COOH-terminated alkanethiol SAMs on Au(111). Applied Surface Science, 2005, 244, 584-587.	3.1	35
98	Growth Processes and Control of Two-Dimensional Structure of Carboxylic Acid-Terminated Self-Assembled Monolayers on Au(111). Japanese Journal of Applied Physics, 2005, 44, 1052-1054.	0.8	18
99	Rectified photocurrent in a protein based molecular photo-diode consisting of a cytochrome b562-green fluorescent protein chimera self-assembled monolayer. Biosensors and Bioelectronics, 2004, 19, 1169-1174.	5.3	28
100	Adsorption of thiophene and 2,5-dimethylthiophene on Au from ethanol solutions. Surface Science, 2003, 532-535, 1116-1120.	0.8	38
101	Solvent Effect on Formation of Cysteamine Self-Assembled Monolayers on Au(111). Japanese Journal of Applied Physics, 2003, 42, 236-241.	0.8	29
102	Different Adsorption States between Thiophene and \hat{l} ±-Bithiophene Thin Films Prepared by Self-Assembly Method. Japanese Journal of Applied Physics, 2003, 42, L852-L855.	0.8	29
103	Structural Investigation of Cyclohexanethiol Self-Assembled Monolayers on Au(111) by Scanning Tunneling Microscopy. Langmuir, 2002, 18, 9111-9115.	1.6	28
104	Final Phase of Alkanethiol Self-Assembled Monolayers on Au(111). Langmuir, 2002, 18, 1953-1956.	1.6	86
105	Surface and Adsorption Structures of Dialkyl Sulfide Self-Assembled Monolayers on Au(111). Journal of Physical Chemistry B, 2002, 106, 13268-13272.	1.2	56
106	An STM Study on Solvent Effects in Forming Self-Assembled Cysteamine and Propanethiol Monolayers on Au(111). Molecular Crystals and Liquid Crystals, 2002, 377, 177-180.	0.4	9
107	An HREELS Study of Alkanethiol Self-Assembled Monolayers on Au(111). Journal of Physical Chemistry B, 2002, 106, 9655-9658.	1.2	105
108	Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery. Journal of Power Sources, 2002, 109, 388-393.	4.0	96

#	Article	IF	CITATIONS
109	High-Resolution STM and XPS Studies of Thiophene Self-Assembled Monolayers on Au(111). Journal of Physical Chemistry B, 2002, 106, 7139-7141.	1.2	160
110	Molecular Decomposition via Striped Phase in Self-assembled Monolayers of Alkanethiols Adsorbed on Au(111). Molecular Crystals and Liquid Crystals, 2001, 371, 95-98.	0.3	3
111	Molecular-Scale Desorption Processes and the Alternating Missing-Row Phase of Alkanethiol Self-Assembled Monolayers on Au(111). Langmuir, 2001, 17, 7280-7285.	1.6	69
112	The Fabrication of a Self-Assembled Multilayer System Containing an Electron-Transporting Channel. Studies in Interface Science, 2001, 11, 337-350.	0.0	0
113	Synthesis and Characterization of Soluble Polythiophene Derivatives Containing Electron-Transporting Moiety. Macromolecules, 2001, 34, 2522-2527.	2.2	92
114	Formation Kinetics and Structure of 3-Octylthiophene Self-Assembled Monolayers on Gold Surfaces. Chemistry Letters, 2000, 29, 630-631.	0.7	16
115	Surface Structures in Spatio-Temporal Ordering of Alkanethiol Self-Assembled Monolayers on Au(111). Molecular Crystals and Liquid Crystals, 2000, 349, 223-226.	0.3	2
116	Nanoscopic Evidence for Dissociative Adsorption of Asymmetric Disulfide Self-Assembled Monolayers on Au(111). Langmuir, 2000, 16, 2045-2048.	1.6	83
117	Nanoscopic Investigation of the Self-Assembly Processes of Dialkyl Disulfides and Dialkyl Sulfides on Au(111). Journal of Physical Chemistry B, 2000, 104, 7411-7416.	1.2	85
118	Surface Morphology of Alkanethiol Self-Assembled Monolayers on Au(111) after Desorption Studied by Scanning Tunneling Microscopy. Molecular Crystals and Liquid Crystals, 1999, 327, 87-90.	0.3	5
119	Studies on the Adsorbed States of Alkanethiol Self-Assembled Monolayers on Au(111) by Thermal Desorption Spectroscopy. Molecular Crystals and Liquid Crystals, 1999, 337, 161-164.	0.3	2