Min Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532253/publications.pdf Version: 2024-02-01

MIN WANC

#	Article	IF	CITATIONS
1	Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biological Psychiatry, 2022, 92, 480-490.	1.3	15
2	The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Molecular Psychiatry, 2021, 26, 3684-3700.	7.9	41
3	M1 receptors interacting with NMDAR enhance delay-related neuronal firing and improve working memory performance. Current Research in Neurobiology, 2021, 2, 100016.	2.3	5
4	Involvement of Nicotinic Receptors in Working Memory Function. Current Topics in Behavioral Neurosciences, 2020, 45, 89-99.	1.7	10
5	Muscarinic M1 Receptors Modulate Working Memory Performance and Activity via KCNQ Potassium Channels in the Primate Prefrontal Cortex. Neuron, 2020, 106, 649-661.e4.	8.1	52
6	A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology, 2019, 150, 46-58.	4.1	41
7	Noradrenergic α1-Adrenoceptor Actions in the Primate Dorsolateral Prefrontal Cortex. Journal of Neuroscience, 2019, 39, 2722-2734.	3.6	25
8	Evolution in Neuromodulation—The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Frontiers in Neural Circuits, 2018, 12, 67.	2.8	21
9	Persistent Spiking Activity Underlies Working Memory. Journal of Neuroscience, 2018, 38, 7020-7028.	3.6	229
10	Nicotinic α4β2 Cholinergic Receptor Influences on Dorsolateral Prefrontal Cortical Neuronal Firing during a Working Memory Task. Journal of Neuroscience, 2017, 37, 5366-5377.	3.6	45
11	Targeting Prefrontal Cortical Systems for Drug Development: Potential Therapies for Cognitive Disorders. Annual Review of Pharmacology and Toxicology, 2016, 56, 339-360.	9.4	67
12	Dopamine's Actions in Primate Prefrontal Cortex: Challenges for Treating Cognitive Disorders. Pharmacological Reviews, 2015, 67, 681-696.	16.0	126
13	Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates. Neuroscience Bulletin, 2015, 31, 191-197.	2.9	37
14	Constellation of HCN Channels and cAMP Regulating Proteins in Dendritic Spines of the Primate Prefrontal Cortex: Potential Substrate for Working Memory Deficits in Schizophrenia. Cerebral Cortex, 2013, 23, 1643-1654.	2.9	105
15	NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex. Neuron, 2013, 77, 736-749.	8.1	412
16	Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12078-12083.	7.1	153
17	Neuronal basis of age-related working memory decline. Nature, 2011, 476, 210-213.	27.8	383
18	α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex. Cell, 2007, 129, 397-410.	28.9	628

#	Article	IF	CITATIONS
19	Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience, 2007, 10, 376-384.	14.8	911
20	Selective D2 Receptor Actions on the Functional Circuitry of Working Memory. Science, 2004, 303, 853-856.	12.6	295