
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5322143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Group three nitride clusters as promising components for nanoelectronics. Materials Today Chemistry, 2022, 23, 100751.	1.7	2
2	Coherent and Incoherent Contributions to Molecular Electron Transport. Journal of Chemical Physics, 2022, 156, 094302.	1.2	12
3	Permeation of Fosfomycin through the Phosphate-Specific Channels OprP and OprO of <i>Pseudomonas aeruginosa</i> . Journal of Physical Chemistry B, 2022, 126, 1388-1403.	1.2	7
4	Transverse electronic transport through nucleobase-pairs of a DNA wire. Materials Today Chemistry, 2022, 24, 100834.	1.7	2
5	Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner. ACS Nano, 2022, 16, 7701-7712.	7.3	6
6	Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II. Journal of Chemical Physics, 2022, 156, .	1.2	8
7	Permeation eines 5.1â€kDaâ€₽eptides durch einen Proteinkanal: Molekulare Basis der Translokation von Protamin durch CymA aus Klebsiella Oxytoca **. Angewandte Chemie, 2021, 133, 8170-8175.	1.6	2
8	How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chemical Reviews, 2021, 121, 5158-5192.	23.0	103
9	Largeâ€₽eptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from <i>Klebsiella Oxytoca</i> **. Angewandte Chemie - International Edition, 2021, 60, 8089-8094.	7.2	15
10	Improved Sampling and Free Energy Estimates for Antibiotic Permeation through Bacterial Porins. Journal of Chemical Theory and Computation, 2021, 17, 4564-4577.	2.3	15
11	Time-dependent atomistic simulations of the CP29 light-harvesting complex. Journal of Chemical Physics, 2021, 155, 055103.	1.2	10
12	Robust Strategy for Photoprotection in the Light-Harvesting Antenna of Diatoms: A Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2021, 12, 9626-9633.	2.1	12
13	Multiscale QM/MM molecular dynamics simulations of the trimeric major light-harvesting complex II. Physical Chemistry Chemical Physics, 2021, 23, 7407-7417.	1.3	24
14	Millisecond-Long Simulations of Antibiotics Transport through Outer Membrane Channels. Journal of Chemical Theory and Computation, 2021, 17, 549-559.	2.3	8
15	DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex. Journal of Physical Chemistry Letters, 2020, 11, 8660-8667.	2.1	34
16	Voltage-Dependent Transport of Neutral Solutes through Nanopores: A Molecular View. Journal of Physical Chemistry B, 2020, 124, 10718-10731.	1.2	8
17	The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics. Scientific Reports, 2020, 10, 17356.	1.6	54
18	Dynamic interaction of fluoroquinolones with magnesium ions monitored using bacterial outer membrane nanopores. Chemical Science, 2020, 11, 10344-10353.	3.7	23

#	Article	IF	CITATIONS
19	Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5, 1016-1025.	5.9	46
20	Computational Modeling of Ion Transport in Bulk and through a Nanopore Using the Drude Polarizable Force Field. Journal of Chemical Information and Modeling, 2020, 60, 3188-3203.	2.5	16
21	Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials. Journal of Chemical Information and Modeling, 2020, 60, 2591-2604.	2.5	24
22	Quantum biology revisited. Science Advances, 2020, 6, eaaz4888.	4.7	266
23	Exploration of Free Energy Surfaces Across a Membrane Channel Using Metadynamics and Umbrella Sampling. Journal of Chemical Theory and Computation, 2020, 16, 2751-2765.	2.3	26
24	Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes. Physical Chemistry Chemical Physics, 2020, 22, 10500-10518.	1.3	36
25	On a chlorophyll-caroteinoid coupling in LHCII. Chemical Physics, 2019, 526, 110439.	0.9	24
26	Structural Basis for Allosteric Regulation in the Major Antenna Trimer of Photosystem II. Journal of Physical Chemistry B, 2019, 123, 9609-9615.	1.2	17
27	Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell, 2019, 179, 1098-1111.e23.	13.5	122
28	Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophysical Journal, 2019, 116, 258-269.	0.2	24
29	Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183059.	1.4	30
30	Modeling of Specific Lipopolysaccharide Binding Sites on a Gram-Negative Porin. Journal of Physical Chemistry B, 2019, 123, 5700-5708.	1.2	11
31	Chebyshev hierarchical equations of motion for systems with arbitrary spectral densities and temperatures. Journal of Chemical Physics, 2019, 150, 244104.	1.2	29
32	Molecular Interactions of Cephalosporins with the Deep Binding Pocket of the RND Transporter AcrB. Journal of Physical Chemistry B, 2019, 123, 4625-4635.	1.2	18
33	Dephasing in a Molecular Junction Viewed from a Time-Dependent and a Time-Independent Perspective. Journal of Physical Chemistry C, 2019, 123, 9590-9599.	1.5	5
34	A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure, 2019, 27, 268-280.e6.	1.6	41
35	Structural basis for chitin acquisition by marine Vibrio species. Nature Communications, 2018, 9, 220.	5.8	37
36	Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 836-845.	1.1	42

#	Article	IF	CITATIONS
37	Enrofloxacin Permeation Pathways across the Porin OmpC. Journal of Physical Chemistry B, 2018, 122, 1417-1426.	1.2	24
38	Understanding the Structure and Function of the DcaP Channel from Acinetobacter baumannii using MD Simulations. Biophysical Journal, 2018, 114, 491a.	0.2	0
39	Brownian Dynamics Approach Including Explicit Atoms for Studying Ion Permeation and Substrate Translocation across Nanopores. Journal of Chemical Theory and Computation, 2018, 14, 6701-6713.	2.3	11
40	Non-equilibrium Green's function transport theory for molecular junctions with general molecule-lead coupling and temperatures. Journal of Chemical Physics, 2018, 149, 234108.	1.2	12
41	Simulation Study of Occk5 Functional Properties in <i>Pseudomonas aeruginosa</i> Outer Membranes. Journal of Physical Chemistry B, 2018, 122, 8185-8192.	1.2	12
42	Identification and characterization of smallest pore-forming protein in the cell wall of pathogenic Corynebacterium urealyticum DSM 7109. BMC Biochemistry, 2018, 19, 3.	4.4	7
43	Environmental effects on the dynamics in the light-harvesting complexes LH2 and LH3 based on molecular simulations. Chemical Physics, 2018, 515, 141-151.	0.9	16
44	Microsecond Simulation of Electron Transfer in DNA: Bottom-Up Parametrization of an Efficient Electron Transfer Model Based on Atomistic Details. Journal of Physical Chemistry B, 2017, 121, 529-549.	1.2	23
45	Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541, 407-411.	13.7	188
46	Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545. Journal of Physical Chemistry B, 2017, 121, 1330-1339.	1.2	26
47	Single Residue Acts as Gate in OccK Channels. Journal of Physical Chemistry B, 2017, 121, 2614-2621.	1.2	15
48	Dephasing Times in the Phycobiliprotein Antenna Complexes PE545 and PE555. Biophysical Journal, 2017, 112, 442a.	0.2	0
49	Tsx as a Nucleoside Channel. Biophysical Journal, 2017, 112, 450a.	0.2	0
50	Polaron Effects on Charge Transport through Molecular Wires: A Multiscale Approach. Journal of Chemical Theory and Computation, 2017, 13, 286-296.	2.3	16
51	Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nature Microbiology, 2017, 2, 1616-1623.	5.9	118
52	Conversion of OprO into an OprP-like Channel by Exchanging Key Residues in the Channel Constriction. Biophysical Journal, 2017, 113, 829-834.	0.2	10
53	Characterization of Ciprofloxacin Permeation Pathways across the Porin OmpC Using Metadynamics and a String Method. Journal of Chemical Theory and Computation, 2017, 13, 4553-4566.	2.3	41
54	Relation between Vibrational Dephasing Time and Energy Gap Fluctuations. Journal of Physical Chemistry B, 2017, 121, 6471-6478.	1.2	5

#	Article	IF	CITATIONS
55	Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex. Journal of Physical Chemistry B, 2017, 121, 3228-3236.	1.2	13
56	What Keeps TolC Closed? Insights from Molecular Dynamics Simulations. Biophysical Journal, 2016, 110, 625a.	0.2	0
57	BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms. Journal of Chemical Theory and Computation, 2016, 12, 2401-2417.	2.3	14
58	Environmental coupling and population dynamics in the PE545 light-harvesting complex. Journal of Luminescence, 2016, 169, 406-409.	1.5	12
59	Simulations of outer membrane channels and their permeability. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1760-1771.	1.4	44
60	Chebyshev Expansion Applied to Dissipative Quantum Systems. Journal of Physical Chemistry A, 2016, 120, 3270-3277.	1.1	16
61	Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example. Biophysical Journal, 2016, 110, 600-611.	0.2	55
62	Relation between Dephasing Time and Energy Gap Fluctuations in Biomolecular Systems. Journal of Physical Chemistry Letters, 2016, 7, 1102-1108.	2.1	10
63	Environmental Coupling and Population Dynamics in the PE545 Light-Harvesting Complex. Biophysical Journal, 2015, 108, 604a-605a.	0.2	0
64	Computational Study of Correlated Domain Motions in the AcrB Efflux Transporter. BioMed Research International, 2015, 2015, 1-12.	0.9	14
65	Theoretical analysis of ion conductance and gating transitions in the OpdK (OccK1) channel. Analyst, The, 2015, 140, 4855-4864.	1.7	12
66	Atomistic Modeling of Two-Dimensional Electronic Spectra and Excited-State Dynamics for a Light Harvesting 2 Complex. Journal of Physical Chemistry B, 2015, 119, 1302-1313.	1.2	59
67	AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3511-3516.	3.3	165
68	Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl <i>a</i> in Solution and in FMO Proteins. Journal of Physical Chemistry B, 2015, 119, 9995-10004.	1.2	82
69	Outer-membrane translocation of bulky small molecules by passive diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2991-9.	3.3	70
70	Understanding the Translocation of Fluoroquinolones through OmpC using the Metadynamics. Biophysical Journal, 2015, 108, 443a.	0.2	0
71	Using the Chebychev expansion in quantum transport calculations. Journal of Chemical Physics, 2015, 142, 154103.	1.2	16
72	Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa. Biophysical Journal, 2015, 109, 1429-1438.	0.2	39

#	Article	IF	CITATIONS
73	Tuning the Affinity of Anion Binding Sites in Porin Channels with Negatively Charged Residues: Molecular Details for OprP. ACS Chemical Biology, 2015, 10, 441-451.	1.6	24
74	OmpW of Caulobacter crescentus Functions as an Outer Membrane Channel for Cations. PLoS ONE, 2015, 10, e0143557.	1.1	18
75	Different Types of Vibrations Interacting with Electronic Excitations in Phycoerythrin 545 and Fenna–Matthews–Olson Antenna Systems. Journal of Physical Chemistry Letters, 2014, 5, 3131-3137.	2.1	51
76	Environmental Effects in the FMO and PE545 Photosynthetic Complexes. Biophysical Journal, 2014, 106, 181a-182a.	0.2	0
77	Investigating the Structure-Function Relationship of the Phosphate-Selective Channel OprP. Biophysical Journal, 2014, 106, 149a.	0.2	Ο
78	Role of the Central Arginine R133 toward the Ion Selectivity of the Phosphate Specific Channel OprP: Effects of Charge and Solvation. Biochemistry, 2013, 52, 5522-5532.	1.2	27
79	Deciphering the Ion Selectivity of the Phosphate Specific Channel OprP from Pseudomonas Aeruginosa: A Free-Energy Molecular Dynamics Simulation Study. Biophysical Journal, 2013, 104, 624a.	0.2	Ο
80	Modeling charge transport in DNA using multiâ€scale methods. Physica Status Solidi (B): Basic Research, 2013, 250, 2277-2287.	0.7	26
81	The FMO Complex in a Glycerol–Water Mixture. Journal of Physical Chemistry B, 2013, 117, 7157-7163.	1.2	34
82	Simulation of Ion Transport through an <i>N</i> -Acetylneuraminic Acid-Inducible Membrane Channel: From Understanding to Engineering. Journal of Physical Chemistry B, 2013, 117, 15966-15975.	1.2	7
83	Treatment of timeâ€dependent effects in molecular junctions. Physica Status Solidi (B): Basic Research, 2013, 250, 2288-2297.	0.7	20
84	Corynebacterium jeikeium jk0268 Constitutes for the 40 Amino Acid Long PorACj, Which Forms a Homooligomeric and Anion-Selective Cell Wall Channel. PLoS ONE, 2013, 8, e75651.	1.1	14
85	Juxtaposing density matrix and classical path-based wave packet dynamics. Journal of Chemical Physics, 2012, 136, 214101.	1.2	38
86	Pulling Peptides across Nanochannels: Resolving Peptide Binding and Translocation through the Hetero-oligomeric Channel from <i>Nocardia farcinica</i> . ACS Nano, 2012, 6, 10699-10707.	7.3	57
87	Modeling the Ion Selectivity of the Phosphate Specific Channel OprP. Journal of Physical Chemistry Letters, 2012, 3, 3639-3645.	2.1	28
88	Selective Probing of Vibrational Hot States in Bromine Using Time-Resolved Coherent Anti-Stokes Raman Scattering. Journal of Physical Chemistry A, 2012, 116, 11341-11346.	1.1	3
89	Preparational Effects on the Excitation Energy Transfer in the FMO Complex. Journal of Physical Chemistry B, 2012, 116, 3900-3906.	1.2	19
90	Probing the Transport of Ionic Liquids in Aqueous Solution through Nanopores. Biophysical Journal, 2012, 102, 205a.	0.2	0

#	Article	IF	CITATIONS
91	Time-Dependent View of Sequential Transport through Molecules with Rapidly Fluctuating Bridges. Physical Review Letters, 2012, 109, 176802.	2.9	32
92	Computational modeling of ion transport through nanopores. Nanoscale, 2012, 4, 6166.	2.8	60
93	Effect of the F610A Mutation on Substrate Extrusion in the AcrB Transporter: Explanation and Rationale by Molecular Dynamics Simulations. Journal of the American Chemical Society, 2011, 133, 10704-10707.	6.6	79
94	Domain Motion of Individual F1-ATPase β-Subunits during Unbiased Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2011, 115, 7267-7274.	1.1	23
95	Theory and Simulation of the Environmental Effects on FMO Electronic Transitions. Journal of Physical Chemistry Letters, 2011, 2, 1771-1776.	2.1	193
96	From Atomistic Modeling to Excitation Transfer and Two-Dimensional Spectra of the FMO Light-Harvesting Complex. Journal of Physical Chemistry B, 2011, 115, 8609-8621.	1.2	197
97	Role of Water during the Extrusion of Substrates by the Efflux Transporter AcrB. Journal of Physical Chemistry B, 2011, 115, 8278-8287.	1.2	38
98	Probing the Transport of Ionic Liquids in Aqueous Solution through Nanopores. Journal of Physical Chemistry Letters, 2011, 2, 2331-2336.	2.1	29
99	From Atomistic Modeling to Electronic Properties of Light-Harvesting Systems. Semiconductors and Semimetals, 2011, , 83-114.	0.4	4
100	Quest for Spatially Correlated Fluctuations in the FMO Light-Harvesting Complex. Journal of Physical Chemistry B, 2011, 115, 758-764.	1.2	128
101	DNA condensation by TmHU studied by optical tweezers, AFM and molecular dynamics simulations. Journal of Biological Physics, 2011, 37, 117-131.	0.7	7
102	Modeling of lightâ€harvesting in purple bacteria using a timeâ€dependent Hamiltonian approach. Physica Status Solidi (B): Basic Research, 2011, 248, 393-398.	0.7	9
103	Optimal control of shot noise and Fano factor by external fields. European Physical Journal B, 2010, 76, 309-319.	0.6	7
104	Functional Rotation of the Transporter AcrB: Insights into Drug Extrusion from Simulations. PLoS Computational Biology, 2010, 6, e1000806.	1.5	83
105	Permeation through nanochannels: revealing fast kinetics. Journal of Physics Condensed Matter, 2010, 22, 454131.	0.7	9
106	Theoretische Chemie 2009. Nachrichten Aus Der Chemie, 2010, 58, 331-338.	0.0	0
107	Calculation of optical Properties from Molecular-Dynamics Simulations of Light-Harvesting Systems. Biophysical Journal, 2010, 98, 173a.	0.2	0
108	Comparing the Temperature-Dependent Conductance of the Two Structurally Similar E. coli Porins OmpC and OmpF. Biophysical Journal, 2010, 98, 1830-1839.	0.2	54

#	Article	IF	CITATIONS
109	Time-Dependent Atomistic View on the Electronic Relaxation in Light-Harvesting System II. Journal of Physical Chemistry B, 2010, 114, 12427-12437.	1.2	140
110	Functional Rotation of the Transporter AcrB: Insights into Drug Extrusion from Simulations. Biophysical Journal, 2010, 98, 628a.	0.2	1
111	Functional Rotation of the Transporter AcrB: The Essentials of Peristaltic Motion and Subsequent Substrate Extrusion. Biophysical Journal, 2010, 98, 685a.	0.2	2
112	Probing the vibrational dynamics of high-lying electronic states using pump-degenerate four-wave mixing. Physical Chemistry Chemical Physics, 2010, 12, 1351-1356.	1.3	7
113	Ultrafast vibrational dynamics in higher electronic excited states of iodine. Journal of Raman Spectroscopy, 2009, 40, 822-827.	1.2	8
114	Probing the contributions of hot vibrational states using pump-degenerate four-wave mixing. Chemical Physics Letters, 2009, 470, 39-43.	1.2	4
115	Coherent control of the spin current through a quantum dot. European Physical Journal B, 2009, 68, 103-109.	0.6	16
116	Solvent Fluctuations Drive the Hole Transfer in DNA: A Mixed Quantumâ^'Classical Study. Journal of Physical Chemistry B, 2009, 113, 13107-13117.	1.2	71
117	Transitions between Closed and Open Conformations of TolC: The Effects of Ions in Simulations. Biophysical Journal, 2009, 96, 3116-3125.	0.2	43
118	Understanding Ion Conductance on a Molecular Level: An All-Atom Modeling of the Bacterial Porin OmpF. Biophysical Journal, 2009, 97, 1898-1906.	0.2	88
119	Simulating Efflux Pumps: The Extrusion Mechanism of Substrates. Biophysical Journal, 2009, 96, 381a-382a.	0.2	0
120	Simulating Efflux Pumps: Opening of the Exit Duct TolC. Biophysical Journal, 2009, 96, 272a.	0.2	0
121	Ion Transport through OmpF in Molecular Dynamics Simulations and Experiments. Biophysical Journal, 2009, 96, 661a.	0.2	0
122	Time-Local Quantum Master Equations and their Applications to Dissipative Dynamics and Molecular Wires. Springer Series in Chemical Physics, 2009, , 339-361.	0.2	4
123	Transport at the nanoscale: temperature dependence of ion conductance. European Biophysics Journal, 2008, 38, 121-125.	1.2	60
124	Timeâ€dependent suppression of current through molecular junctions. Physica Status Solidi (B): Basic Research, 2008, 245, 2720-2724.	0.7	7
125	Treatment of laser-field effects on a molecular wire and its coupling to the leads. Journal of Luminescence, 2008, 128, 1078-1080.	1.5	6
126	Sequences of ultrafast non-resonant multiphoton transitions in a three-electronic level molecule. Chemical Physics, 2008, 347, 229-242.	0.9	3

8

#	Article	IF	CITATIONS
127	Shaping femtosecond coherent anti-Stokes Raman spectra using optimal control theory. Physical Chemistry Chemical Physics, 2008, 10, 2058.	1.3	10
128	Suppressing the current through molecular wires: comparison of two mechanisms. New Journal of Physics, 2008, 10, 085005.	1.2	22
129	Tailoring current flow patterns through molecular wires using shaped optical pulses. Physical Review B, 2008, 77, .	1.1	30
130	Coherent laser control of the current through molecular junctions. Europhysics Letters, 2007, 79, 27006.	0.7	61
131	Reduced dynamics of coupled harmonic and anharmonic oscillators using higher-order perturbation theory. Journal of Chemical Physics, 2007, 126, 114102.	1.2	58
132	A time-dependent modified Redfield theory for absorption spectra applied to light-harvesting systems. Journal of Luminescence, 2007, 125, 126-132.	1.5	16
133	Coherent destruction of the current through molecular wires using short laser pulses. Physica Status Solidi (B): Basic Research, 2006, 243, 3775-3781.	0.7	13
134	Density matrix theory for reductive electron transfer in DNA. Journal of Luminescence, 2006, 119-120, 91-95.	1.5	5
135	Laser-driven molecular wires studied by a non-Markovian density matrix approach. Journal of Luminescence, 2006, 119-120, 462-467.	1.5	9
136	Switching the current through model molecular wires with Gaussian laser pulses. Europhysics Letters, 2006, 75, 139-145.	0.7	49
137	The influence of ultrafast laser pulses on electron transfer in molecular wires studied by a non-Markovian density-matrix approach. Journal of Chemical Physics, 2006, 124, 044712.	1.2	121
138	Calculation of absorption spectra for light-harvesting systems using non-Markovian approaches as well as modified Redfield theory. Journal of Chemical Physics, 2006, 124, 084903.	1.2	104
139	Absorption spectra for a model light-harvesting system using non-Markovian theories. Journal of Luminescence, 2005, 112, 461-464.	1.5	5
140	Coherent-state path integral approach to the damped harmonic oscillator. Journal of Physics A, 2004, 37, 3019-3040.	1.6	4
141	A Monte Carlo method for propagating multi-dimensional wave packets. Physica Status Solidi (B): Basic Research, 2004, 241, 2157-2167.	0.7	1
142	Non-Markovian effects in the anisotropy of fluorescence in LH2 units. Journal of Luminescence, 2004, 108, 137-141.	1.5	5
143	The mapping approach in the path integral formalism applied to curve-crossing systems. Chemical Physics, 2004, 296, 149-158.	0.9	5
144	Non-Markovian theories based on a decomposition of the spectral density. Journal of Chemical Physics, 2004, 121, 2505.	1.2	115

#	Article	IF	CITATIONS
145	Memory Effects in the Fluorescence Depolarization Dynamics Studied within the B850 Ring of Purple Bacteria. Journal of Physical Chemistry B, 2003, 107, 14094-14102.	1.2	15
146	Stochastic unraveling of Redfield master equations and its application to electron transfer problems. Journal of Chemical Physics, 2003, 119, 6635-6646.	1.2	20
147	Stochastic unraveling of time-local quantum master equations beyond the Lindblad class. Physical Review E, 2002, 66, 037701.	0.8	16
148	Femtosecond laser pulse control of electron transfer processes. Journal of Chemical Physics, 2002, 117, 636-646.	1.2	36
149	On homogeneous generalized master equations. Journal of Physics A, 2002, 35, 5521-5524.	1.6	1
150	NUMERICAL SIMULATION OF ELECTRON TRANSFER RATES IN BETAINE-30. Nonlinear Optics, Quantum Optics, 2002, 29, 595-601.	0.2	3
151	FEMTOSECOND DYNAMICS IN THE ANISOTROPY OF EMISSION IN LH2 UNITS. Nonlinear Optics, Quantum Optics, 2002, 29, 151-154.	0.2	0
152	FEMTOSECOND DYNAMICS IN THE ANISOTROPY OF EMISSION IN LH2 UNITS. Nonlinear Optics, Quantum Optics, 2002, 29, 167-172.	0.2	6
153	Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study. Physical Review E, 2002, 65, 031919.	0.8	261
154	Influence of static and dynamic disorder on the anisotropy of emission in the ring antenna subunits of purple bacteria photosynthetic systems. Chemical Physics, 2002, 275, 1-13.	0.9	33
155	Generalized Heitler-London theory for H 3 : a comparison of the surface integral method with perturbation theory. European Physical Journal D, 2002, 18, 61-68.	0.6	0
156	Efficiency of different numerical methods for solving Redfield equations. Journal of Chemical Physics, 2001, 114, 1497-1504.	1.2	32
157	Perturbative treatment of intercenter coupling in the framework of Redfield theory. Chemical Physics, 2001, 268, 121-130.	0.9	35
158	Exciton scattering in light-harvesting systems of purple bacteria. Journal of Luminescence, 2001, 94-95, 447-450.	1.5	24
159	A density matrix approach to photoinduced electron injection. Journal of Luminescence, 2001, 94-95, 471-474.	1.5	15
160	Ground state potentials for alkaline-earth–helium diatoms calculated by the surface integral method. Chemical Physics Letters, 2000, 324, 403-410.	1.2	31
161	Different direct integrators for Redfield equations applied to electron transfer dynamics. Journal of Molecular Liquids, 2000, 86, 77-84.	2.3	5
162	Three-body exchange energies in H3 and He3 calculated by the surface integral method. Journal of Chemical Physics, 2000, 113, 948-956.	1.2	7

#	Article	IF	CITATIONS
163	Electron Transfer in Porphyrin Complexes in Different Solvents. Journal of Physical Chemistry A, 2000, 104, 5413-5421.	1.1	20
164	Long Range Binding in Alkali-Helium Pairs. Physical Review Letters, 1999, 83, 4717-4720.	2.9	87
165	Extension of the mapped Fourier method to time-dependent problems. Physical Review E, 1999, 60, 4926-4933.	0.8	13
166	The generalized Heitler–London theory for the H3 potential energy surface. Journal of Chemical Physics, 1999, 111, 3377-3386.	1.2	13
167	The mapped Fourier method for scattering problems. Chemical Physics Letters, 1999, 313, 665-669.	1.2	5
168	Comparison of two models for bridge-assisted charge transfer. Journal of Luminescence, 1999, 83-84, 235-240.	1.5	15
169	Van der Waals potentials of He2, Ne2, and Ar2 with the exchange energy calculated by the surface integral method. Journal of Chemical Physics, 1997, 107, 9502-9513.	1.2	45
170	Potentials for some rare gas and alkali-helium systems calculated from the surface integral method. Chemical Physics Letters, 1996, 249, 257-263.	1.2	95
171	Generalized Heitler-London theory with exchange energy by the surface integral method: an application to the alkali metal dimer cations. Chemical Physics Letters, 1996, 257, 651-657.	1.2	14
172	Boundary-condition-determined wave function for the ground state of helium and isoelectronic ions. Physical Review A, 1996, 54, 2840-2849.	1.0	42
173	Angular momentum coupling in the exchange energy of multielectron systems. Journal of Chemical Physics, 1995, 103, 6617-6630.	1.2	17
174	Line defects in quasi-one-dimensional systems: Orthogonality exponents and electron density. Physical Review B, 1993, 48, 4816-4822.	1.1	0
175	Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. SSRN Electronic Journal, 0, , .	0.4	1
176	Atomistic Simulation of Molecules Interacting with Biological Nanopores: From Current Understanding to Future Directions. Journal of Physical Chemistry B, 0, , .	1.2	6