List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5322065/publications.pdf Version: 2024-02-01



Χήζηση Υγν

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stimuli-responsive supramolecular polymeric materials. Chemical Society Reviews, 2012, 41, 6042.                                                                                                                              | 18.7 | 1,440     |
| 2  | Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 2015, 115, 7398-7501.                                                                           | 23.0 | 719       |
| 3  | A Multiresponsive, Shapeâ€Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by<br>Orthogonal Selfâ€Assembly. Advanced Materials, 2012, 24, 362-369.                                                      | 11.1 | 667       |
| 4  | Selfâ€Healing Supramolecular Gels Formed by Crown Ether Based Host–Guest Interactions. Angewandte<br>Chemie - International Edition, 2012, 51, 7011-7015.                                                                     | 7.2  | 666       |
| 5  | Highly emissive platinum(II) metallacages. Nature Chemistry, 2015, 7, 342-348.                                                                                                                                                | 6.6  | 597       |
| 6  | Characterization of supramolecular gels. Chemical Society Reviews, 2013, 42, 6697.                                                                                                                                            | 18.7 | 529       |
| 7  | Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and<br>metal–ligand interactions. Chemical Society Reviews, 2015, 44, 815-832.                                                            | 18.7 | 504       |
| 8  | Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for<br>Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical<br>Society, 2018, 140, 5280-5289. | 6.6  | 464       |
| 9  | A Dualâ€Responsive Supramolecular Polymer Gel Formed by Crown Ether Based Molecular Recognition.<br>Angewandte Chemie - International Edition, 2011, 50, 1905-1909.                                                           | 7.2  | 447       |
| 10 | Pillar[6]arene-Based Photoresponsive Host–Guest Complexation. Journal of the American Chemical<br>Society, 2012, 134, 8711-8717.                                                                                              | 6.6  | 446       |
| 11 | A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2,<br>361-368.                                                                                                               | 13.1 | 421       |
| 12 | A Supramolecular Cross-Linked Conjugated Polymer Network for Multiple Fluorescent Sensing.<br>Journal of the American Chemical Society, 2013, 135, 74-77.                                                                     | 6.6  | 395       |
| 13 | Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications. Accounts of Chemical Research, 2016, 49, 2527-2539.                    | 7.6  | 334       |
| 14 | Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of<br>Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.                                          | 6.6  | 310       |
| 15 | Stimuli-Responsive Host–Guest Systems Based on the Recognition of Cryptands by Organic Guests.<br>Accounts of Chemical Research, 2014, 47, 1995-2005.                                                                         | 7.6  | 301       |
| 16 | Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. Journal of the<br>American Chemical Society, 2017, 139, 5067-5074.                                                                            | 6.6  | 301       |
| 17 | An Elastic Autonomous Selfâ€Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical<br>System. Advanced Materials, 2018, 30, e1801435.                                                                         | 11.1 | 280       |
| 18 | Responsive Supramolecular Polymer Metallogel Constructed by Orthogonal Coordination-Driven<br>Self-Assembly and Host/Guest Interactions. Journal of the American Chemical Society, 2014, 136,<br>4460-4463.                   | 6.6  | 265       |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics, 2018, 1, 183-190.                                                                                                                    | 13.1 | 263       |
| 20 | A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable<br>Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing. Journal of<br>the American Chemical Society, 2015, 137, 15276-15286.     | 6.6  | 260       |
| 21 | A Crown Ether Appended Super Gelator with Multiple Stimulus Responsiveness. Advanced Materials, 2012, 24, 3191-3195.                                                                                                                                            | 11.1 | 254       |
| 22 | Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.                                                                                                                     | 5.8  | 249       |
| 23 | Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal<br>Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 2018, 140,<br>7674-7680.                                                              | 6.6  | 242       |
| 24 | Ionically Conductive Selfâ€Healing Binder for Low Cost Si Microparticles Anodes in Liâ€Ion Batteries.<br>Advanced Energy Materials, 2018, 8, 1703138.                                                                                                           | 10.2 | 224       |
| 25 | Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15585-15590.                    | 3.3  | 221       |
| 26 | Hierarchical Self-Assembly: Well-Defined Supramolecular Nanostructures and Metallohydrogels via<br>Amphiphilic Discrete Organoplatinum(II) Metallacycles. Journal of the American Chemical Society,<br>2013, 135, 14036-14039.                                  | 6.6  | 216       |
| 27 | Light-Emitting Superstructures with Anion Effect: Coordination-Driven Self-Assembly of Pure<br>Tetraphenylethylene Metallacycles and Metallacages. Journal of the American Chemical Society, 2016,<br>138, 4580-4588.                                           | 6.6  | 211       |
| 28 | <i>per</i> -Hydroxylated Pillar[6]arene: Synthesis, X-ray Crystal Structure, and Host–Guest<br>Complexation. Organic Letters, 2012, 14, 1532-1535.                                                                                                              | 2.4  | 181       |
| 29 | A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes.<br>Joule, 2019, 3, 2761-2776.                                                                                                                               | 11.7 | 176       |
| 30 | Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.                                                                                                                                                    | 13.1 | 170       |
| 31 | Tetraphenylethene-based highly emissive metallacage as a component of theranostic supramolecular<br>nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016,<br>113, 13720-13725.                                  | 3.3  | 161       |
| 32 | Polymers in Lithiumâ€lon and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239.                                                                                                                                                             | 10.2 | 160       |
| 33 | Reversible Ion onducting Switch in a Novel Singleâ€Ion Supramolecular Hydrogel Enabled by<br>Photoresponsive Host–Guest Molecular Recognition. Advanced Materials, 2019, 31, e1807328.                                                                          | 11.1 | 144       |
| 34 | Self-Assembly of Triangular and Hexagonal Molecular Necklaces. Journal of the American Chemical<br>Society, 2014, 136, 5908-5911.                                                                                                                               | 6.6  | 134       |
| 35 | Engineering Functionalization in a Supramolecular Polymer: Hierarchical Self-Organization of Triply<br>Orthogonal Non-covalent Interactions on a Supramolecular Coordination Complex Platform. Journal<br>of the American Chemical Society, 2016, 138, 806-809. | 6.6  | 134       |
| 36 | Supramolecular polymer nanofibers via electrospinning of a heteroditopic monomer. Chemical Communications, 2011, 47, 7086.                                                                                                                                      | 2.2  | 131       |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A self-healing supramolecular polymer gel with stimuli-responsiveness constructed by crown ether based molecular recognition. Polymer Chemistry, 2013, 4, 3312.                                                                        | 1.9 | 129       |
| 38 | Dendronized Organoplatinum(II) Metallacyclic Polymers Constructed by Hierarchical<br>Coordination-Driven Self-Assembly and Hydrogen-Bonding Interfaces. Journal of the American<br>Chemical Society, 2013, 135, 16813-16816.           | 6.6 | 129       |
| 39 | Photoinduced transformations of stiff-stilbene-based discrete metallacycles to<br>metallosupramolecular polymers. Proceedings of the National Academy of Sciences of the United<br>States of America, 2014, 111, 8717-8722.            | 3.3 | 127       |
| 40 | Host–guest complexation induced emission: a pillar[6]arene-based complex with intense fluorescence<br>in dilute solution. Chemical Communications, 2014, 50, 5017.                                                                     | 2.2 | 119       |
| 41 | Skin-Inspired Electronics Enabled by Supramolecular Polymeric Materials. CCS Chemistry, 2019, 1, 431-447.                                                                                                                              | 4.6 | 118       |
| 42 | Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for<br>cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016,<br>113, 11100-11105.         | 3.3 | 112       |
| 43 | A Self-Cross-Linking Supramolecular Polymer Network Enabled by Crown-Ether-Based Molecular<br>Recognition. Journal of the American Chemical Society, 2020, 142, 2051-2058.                                                             | 6.6 | 108       |
| 44 | Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature<br>Communications, 2020, 11, 3362.                                                                                                           | 5.8 | 106       |
| 45 | <i>Endo</i> - and <i>Exo</i> -Functionalized Tetraphenylethylene M <sub>12</sub> L <sub>24</sub><br>Nanospheres: Fluorescence Emission inside a Confined Space. Journal of the American Chemical<br>Society, 2019, 141, 9673-9679.     | 6.6 | 103       |
| 46 | A Discrete Amphiphilic Organoplatinum(II) Metallacycle with Tunable Lower Critical Solution<br>Temperature Behavior. Journal of the American Chemical Society, 2014, 136, 15497-15500.                                                 | 6.6 | 101       |
| 47 | Photoresponsive Hostâ^Guest Systems Based on a New Azobenzene-Containing Crytpand. Organic<br>Letters, 2010, 12, 2558-2561.                                                                                                            | 2.4 | 100       |
| 48 | Hierarchical Self-Assembly of Responsive Organoplatinum(II) Metallacycle–TMV Complexes with<br>Turn-On Fluorescence. Journal of the American Chemical Society, 2016, 138, 12033-12036.                                                 | 6.6 | 91        |
| 49 | Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms:<br>Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 2018, 140,<br>3257-3263.                                  | 6.6 | 91        |
| 50 | Mechanically Interlocked Vitrimers. Journal of the American Chemical Society, 2022, 144, 872-882.                                                                                                                                      | 6.6 | 89        |
| 51 | Highly Tunable and Facile Synthesis of Uniform Carbon Flower Particles. Journal of the American<br>Chemical Society, 2018, 140, 10297-10304.                                                                                           | 6.6 | 86        |
| 52 | Biomimetic Impact Protective Supramolecular Polymeric Materials Enabled by Quadruple H-Bonding.<br>Journal of the American Chemical Society, 2021, 143, 1162-1170.                                                                     | 6.6 | 85        |
| 53 | Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission.<br>Journal of the American Chemical Society, 2016, 138, 13131-13134.                                                                | 6.6 | 80        |
| 54 | Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23437-23443. | 3.3 | 78        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Supramolecular Micelles Constructed by Crown Ether-Based Molecular Recognition.<br>Macromolecules, 2012, 45, 6457-6463.                                                                                      | 2.2 | 71        |
| 56 | Muscle-Mimetic Synergistic Covalent and Supramolecular Polymers: Phototriggered Formation Leads to Mechanical Performance Boost. Journal of the American Chemical Society, 2021, 143, 902-911.               | 6.6 | 71        |
| 57 | Novel [2]rotaxanes based on the recognition of pillar[5]arenes to an alkane functionalized with triazole moieties. Tetrahedron, 2012, 68, 9179-9185.                                                         | 1.0 | 68        |
| 58 | A dynamic [1]catenane with pH-responsiveness formed via threading-followed-by-complexation.<br>Chemical Communications, 2013, 49, 2512.                                                                      | 2.2 | 68        |
| 59 | Adjustable supramolecular polymer microstructures fabricated by the breath figure method. Polymer Chemistry, 2012, 3, 458-462.                                                                               | 1.9 | 65        |
| 60 | Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials.<br>Angewandte Chemie - International Edition, 2020, 59, 12139-12146.                                         | 7.2 | 63        |
| 61 | Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethyleneâ€Based<br>Metalloassemblies. Angewandte Chemie - International Edition, 2020, 59, 10013-10017.                           | 7.2 | 57        |
| 62 | pH-responsive assembly and disassembly of a supramolecular cryptand-based pseudorotaxane driven by<br>̀–π stacking interaction. Chemical Communications, 2011, 47, 9840.                                     | 2.2 | 56        |
| 63 | Drum-like Metallacages with Size-Dependent Fluorescence: Exploring the Photophysics of<br>Tetraphenylethylene under Locked Conformations. Journal of the American Chemical Society, 2021, 143,<br>9215-9221. | 6.6 | 56        |
| 64 | A Mortiseâ€andâ€īenon Joint Inspired Mechanically Interlocked Network. Angewandte Chemie -<br>International Edition, 2021, 60, 16224-16229.                                                                  | 7.2 | 55        |
| 65 | Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated<br>Cuboctahedra. Journal of the American Chemical Society, 2021, 143, 5826-5835.                                  | 6.6 | 53        |
| 66 | Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable<br>Electronics. ACS Nano, 2017, 11, 7925-7937.                                                                 | 7.3 | 52        |
| 67 | Mechanically interlocked networks cross-linked by a molecular necklace. Nature Communications, 2022, 13, 1393.                                                                                               | 5.8 | 52        |
| 68 | [2]Pseudorotaxanes Based on the Recognition of Cryptands to Vinylogous Viologens. Organic Letters, 2011, 13, 6370-6373.                                                                                      | 2.4 | 51        |
| 69 | Anionâ€Assisted Complexation of Paraquat by Cryptands Based on Bis( <i>m</i> â€phenylene)â€{32]crownâ€10.<br>Chemistry - A European Journal, 2010, 16, 6088-6098.                                            | 1.7 | 48        |
| 70 | Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano, 2017, 11, 5660-5669.                                                     | 7.3 | 47        |
| 71 | Supramolecular Copolymer Constructed by Hierarchical Self-Assembly of Orthogonal Host–Guest,<br>H-Bonding, and Coordination Interactions. ACS Macro Letters, 2016, 5, 671-675.                               | 2.3 | 46        |
| 72 | Near-Infrared Emissive Discrete Platinum(II) Metallacycles: Synthesis and Application in Ammonia<br>Detection. Organic Letters, 2017, 19, 5728-5731.                                                         | 2.4 | 45        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Light-emitting self-assembled metallacages. National Science Review, 2021, 8, nwab045.                                                                                                                                         | 4.6 | 45        |
| 74 | A Supramolecular Polymer Blend Containing Two Different Supramolecular Polymers through<br>Self‧orting Organization of Two Heteroditopic Monomers. Chemistry - A European Journal, 2012, 18,<br>4195-4199.                     | 1.7 | 44        |
| 75 | Integrated motion of molecular machines in supramolecular polymeric scaffolds. Polymer Chemistry, 2013, 4, 2395.                                                                                                               | 1.9 | 42        |
| 76 | Pseudorotaxanes from self-assembly of two crown ether-based cryptands and a 1,2-bis(pyridinium) ethane derivative. Chemical Communications, 2012, 48, 4968.                                                                    | 2.2 | 41        |
| 77 | A pillar[6]arene with mono(ethylene oxide) substituents: synthesis and complexation with diquat.<br>Chemical Communications, 2013, 49, 8175.                                                                                   | 2.2 | 41        |
| 78 | Two 2 : 3 copillar[5]arene constitutional isomers: syntheses, crystal structures and host–guest<br>complexation of their derivatives with dicarboxylic acid sodium salts in water. Chemical<br>Communications, 2013, 49, 1070. | 2.2 | 40        |
| 79 | Woven Polymer Networks via the Topological Transformation of a [2]Catenane. Journal of the American Chemical Society, 2020, 142, 14343-14349.                                                                                  | 6.6 | 37        |
| 80 | Synthesis of a water-soluble bis(m-phenylene)-32-crown-10-based cryptand and its pH-responsive binding to a paraquat derivative. Chemical Communications, 2013, 49, 1178.                                                      | 2.2 | 35        |
| 81 | pHâ€Responsive Supramolecular Polymerization in Aqueous Media Driven by Electrostatic<br>Attractionâ€Enhanced Crown Etherâ€Based Molecular Recognition. Macromolecular Rapid<br>Communications, 2012, 33, 1197-1202.           | 2.0 | 32        |
| 82 | A responsive supramolecular polymer formed by orthogonal metal-coordination and cryptand-based host–guest interaction. Chemical Communications, 2014, 50, 3973-3975.                                                           | 2.2 | 32        |
| 83 | Reversible formation of a poly[3]rotaxane based on photo dimerization of an anthracene-capped<br>[3]rotaxane. Chemical Communications, 2014, 50, 14105-14108.                                                                  | 2.2 | 31        |
| 84 | Double‣ayered Supramolecular Prisms Selfâ€Assembled by Geometrically Nonâ€equivalent Tetratopic<br>Subunits. Angewandte Chemie - International Edition, 2021, 60, 1298-1305.                                                   | 7.2 | 31        |
| 85 | Dual-responsive crown ether-based supramolecular chain extended polymers. Polymer Chemistry, 2012, 3, 3175.                                                                                                                    | 1.9 | 30        |
| 86 | Preparation of a Diblock Supramolecular Copolymer via Self-Sorting Organization. Macromolecules, 2012, 45, 9070-9075.                                                                                                          | 2.2 | 29        |
| 87 | Metal–organic polyhedra crosslinked supramolecular polymeric elastomers. Chemical<br>Communications, 2020, 56, 8031-8034.                                                                                                      | 2.2 | 27        |
| 88 | Weldable and closed-loop recyclable monolithic dynamic covalent polymer aerogels. National Science<br>Review, 2022, 9, .                                                                                                       | 4.6 | 27        |
| 89 | Mechanically Interlocked Aerogels with Densely Rotaxanated Backbones. Journal of the American Chemical Society, 2022, 144, 11434-11443.                                                                                        | 6.6 | 27        |
| 90 | Metallosupramolecular Poly[2]pseudorotaxane Constructed by Metal Coordination and Crown-Ether-Based Molecular Recognition. Organic Letters, 2014, 16, 126-129.                                                                 | 2.4 | 26        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven Self-Assembly and C <sub>60</sub> Encapsulation. Inorganic Chemistry, 2017, 56, 12498-12504.                                                | 1.9 | 26        |
| 92  | Benzo-21-crown-7-Based [1]Rotaxanes: Syntheses, X-ray Crystal Structures, and Dynamic Characteristics. Organic Letters, 2013, 15, 5350-5353.                                                                           | 2.4 | 25        |
| 93  | Supramolecular polymer-assisted manipulation of triblock copolymers: understanding the relationships between microphase structures and mechanical properties. Journal of Materials Chemistry A, 2021, 9, 19619-19624.  | 5.2 | 23        |
| 94  | Construction of Supramolecular Polymers Based on <scp>Hostâ€Guest</scp> Recognition <sup>â€</sup> .<br>Chinese Journal of Chemistry, 2020, 38, 1473-1479.                                                              | 2.6 | 22        |
| 95  | Conformational effect on fluorescence emission of tetraphenylethylene-based metallacycles. Chinese<br>Chemical Letters, 2021, 32, 1691-1695.                                                                           | 4.8 | 22        |
| 96  | Antiâ€ <b>S</b> andwich Structured Photoâ€Electronic Wound Dressing for Highly Efficient Bacterial Infection<br>Therapy. Small, 2021, 17, e2101858.                                                                    | 5.2 | 22        |
| 97  | Improved Pseudorotaxane and Catenane Formation from a Derivative of<br>Bis( <i>m</i> â€phenylene)â€32â€crownâ€10. European Journal of Organic Chemistry, 2010, 2010, 6798-6803.                                        | 1.2 | 21        |
| 98  | Supramolecular Side-Chain Poly[2]pseudorotaxanes Formed by Orthogonal Coordination-Driven<br>Self-Assembly and Crown-Ether-Based Host–Guest Interactions. Organic Letters, 2014, 16, 2850-2853.                        | 2.4 | 21        |
| 99  | A chemical-responsive bis(m-phenylene)-32-crown-10/2,7-diazapyrenium salt [2]pseudorotaxane.<br>Chemical Communications, 2012, 48, 8201.                                                                               | 2.2 | 20        |
| 100 | [ <i>n</i> ]Pseudorotaxanes ( <i>n</i> = 2, 3) from Selfâ€Assembly of Two Cryptands and a<br>1,2â€Bis(4â€pyridinium)ethane Derivative. European Journal of Organic Chemistry, 2012, 2012, 6351-6356.                   | 1.2 | 18        |
| 101 | Three Protocols for the Formation of a [3]Pseudorotaxane via Orthogonal Cryptand-Based<br>Host–Guest Recognition and Coordination-Driven Self-Assembly. Organic Letters, 2013, 15, 4984-4987.                          | 2.4 | 18        |
| 102 | A water-soluble, shape-persistent, mouldable supramolecular polymer with redox-responsiveness in the presence of a molecular chaperone. Polymer Chemistry, 2013, 4, 2767.                                              | 1.9 | 18        |
| 103 | Thermoâ€responsive topological metamorphosis in covalentâ€andâ€supramolecular polymer architectures.<br>Aggregate, 2022, 3, .                                                                                          | 5.2 | 18        |
| 104 | Responsive cross-linked supramolecular polymer network: hierarchical supramolecular<br>polymerization driven by cryptand-based molecular recognition and metal coordination. Polymer<br>Chemistry, 2014, 5, 3972-3976. | 1.9 | 17        |
| 105 | Taco complex-templated dynamic clipping to cryptand-based [2]rotaxane- and [2]catenane-type mechanically interlocked structures. RSC Advances, 2013, 3, 21289.                                                         | 1.7 | 15        |
| 106 | Chemically-Responsive Complexation of A Diquaternary Salt with Bis( <i>m</i> -phenylene)-32-Crown-10<br>Derivatives and Host Substituent Effect on Complexation Geometry. Organic Letters, 2013, 15, 534-537.          | 2.4 | 15        |
| 107 | Benzo-21-Crown-7/Secondary Ammonium Salt [2]Rotaxanes with Fluoro/Chlorocarbon Blocking<br>Groups. Organic Letters, 2013, 15, 3538-3541.                                                                               | 2.4 | 14        |
| 108 | Supramolecular polymer networks crosslinked by crown ether-based host–guest recognition:<br>dynamic materials with tailored mechanical properties in the bulk. Polymer Chemistry, 2022, 13,<br>1253-1259.              | 1.9 | 14        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Crown ether-based cryptand/tropylium cation inclusion complexes. Tetrahedron, 2013, 69, 9573-9579.                                                                                                                       | 1.0 | 12        |
| 110 | Coordination-Driven Self-Assembly of Fullerene-Functionalized Pt(II) Metallacycles. Organometallics, 2015, 34, 4813-4815.                                                                                                | 1.1 | 12        |
| 111 | Engineering orthogonality in the construction of an alternating rhomboidal copolymer with high fidelity <i>via</i> integrative self-sorting. Polymer Chemistry, 2020, 11, 367-374.                                       | 1.9 | 12        |
| 112 | Rh(II)-based Metal–Organic Polyhedra. Chemistry Letters, 2020, 49, 659-665.                                                                                                                                              | 0.7 | 12        |
| 113 | A responsive supramolecular metallogel constructed by coordination-driven self-assembly of a crown ether-based [3]pseudorotaxane and a diplatinum( <scp>ii</scp> ) acceptor. Dalton Transactions, 2015, 44, 11264-11268. | 1.6 | 11        |
| 114 | Trackable Supramolecular Fusion: Cage to Cage Transformation of Tetraphenylethyleneâ€Based<br>Metalloassemblies. Angewandte Chemie, 2020, 132, 10099-10103.                                                              | 1.6 | 11        |
| 115 | Multiscale supramolecular polymer network with microphase-separated structure enabled by hostâ^'guest self-sorting recognitions. Chemical Engineering Journal, 2022, 450, 138135.                                        | 6.6 | 11        |
| 116 | Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials.<br>Angewandte Chemie, 2020, 132, 12237-12244.                                                                            | 1.6 | 10        |
| 117 | Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties.<br>Chemical Communications, 2021, 57, 7374-7377.                                                                               | 2.2 | 10        |
| 118 | Double‣ayered Supramolecular Prisms Selfâ€Assembled by Geometrically Nonâ€equivalent Tetratopic<br>Subunits. Angewandte Chemie, 2021, 133, 1318-1325.                                                                    | 1.6 | 8         |
| 119 | Synergistic combination of ACQ and AIE moieties to enhance the emission of hexagonal metallacycles.<br>Chemical Communications, 2021, 57, 11056-11059.                                                                   | 2.2 | 8         |
| 120 | A Mortiseâ€endâ€Tenon Joint Inspired Mechanically Interlocked Network. Angewandte Chemie, 2021, 133,<br>16360-16365.                                                                                                     | 1.6 | 8         |
| 121 | Two protocols for the preparation of [2]rotaxanes based on the dibenzo-24-crown-8-based cryptand/paraquat recognition motif. Tetrahedron Letters, 2013, 54, 6640-6643.                                                   | 0.7 | 7         |
| 122 | Threaded structures based on the benzo-21-crown-7/secondary ammonium salt recognition motif using esters as end groups. Organic and Biomolecular Chemistry, 2013, 11, 3880.                                              | 1.5 | 5         |
| 123 | Stretchable Poly[2]rotaxane Elastomers. Fundamental Research, 2022, , .                                                                                                                                                  | 1.6 | 5         |
| 124 | Engineering Supramolecular Polymer Conformation for Efficient Carbon Nanotube Sorting. Small, 2020, 16, e2000923.                                                                                                        | 5.2 | 4         |
| 125 | Complexation of Paraquat and Diazapyrenium Derivatives with Dipyrido[30]crown-10. European<br>Journal of Organic Chemistry, 2012, 2012, n/a-n/a.                                                                         | 1.2 | 3         |
| 126 | [n]Pseudorotaxanes constructed by a bis(p-phenylene)-34-crown-10-based cryptand: different binding behaviors induced by minor structural changes of guests. RSC Advances, 2015, 5, 38906-38909.                          | 1.7 | 3         |

| #   | Article                                                                                             | IF | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------|----|-----------|
| 127 | Aggregation-Induced Emission on Supramolecular Coordination Complexes Platforms. , 2019, , 163-194. |    | 1         |
|     |                                                                                                     |    |           |