
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental applications of ultrasound activated persulfate/peroxymonosulfate oxidation process in combination with other activating agents. Critical Reviews in Environmental Science and Technology, 2023, 53, 780-802.	6.6	30
2	Recent advances in electro-Fenton process and its emerging applications. Critical Reviews in Environmental Science and Technology, 2023, 53, 887-913.	6.6	57
3	A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. Chemical Engineering Communications, 2022, 209, 390-432.	1.5	56
4	Emerging technologies for mixed industrial wastewater treatment in developing countries: An overview. Environmental Quality Management, 2022, 31, 121-141.	1.0	9
5	Chelate-modified Electro-Fenton process for mixed industrial wastewater treatment. Environmental Technology (United Kingdom), 2022, 43, 3497-3506.	1.2	10
6	Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere, 2022, 287, 132216.	4.2	60
7	Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process. Separation and Purification Technology, 2022, 282, 119999.	3.9	21
8	Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 2022, 26, 100965.	5.6	167
9	Recent progress on ultrasound-assisted electrochemical processes: A review on mechanism, reactor strategies, and applications for wastewater treatment. Environmental Research, 2022, 205, 112463.	3.7	99
10	Effective degradation of azo dye from textile wastewater by electro-peroxone process. Chemosphere, 2022, 289, 133152.	4.2	28
11	Mixed industrial wastewater treatment by the combination of heterogeneous electro-Fenton and electrocoagulation processes. Chemosphere, 2022, 290, 133348.	4.2	18
12	Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions. Current Opinion in Solid State and Materials Science, 2022, 26, 100981.	5.6	57
13	An overview of chelate modified electro-Fenton processes. Journal of Environmental Chemical Engineering, 2022, 10, 107183.	3.3	14
14	Integrated soil washing and bioreactor systems for the treatment of hexachlorocyclohexane contaminated soil: A review on enhanced degradation mechanisms, and factors affecting soil washing and bioreactor performances. Environmental Research, 2022, 208, 112752.	3.7	18
15	Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. Journal of Cleaner Production, 2022, 350, 131319.	4.6	38
16	Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chemical Engineering Journal, 2022, 439, 135716.	6.6	108
17	Magnetite–reduced graphene oxide nanocomposite as an efficient heterogeneous Fenton catalyst for the degradation of tetracycline antibiotics. Environmental Science: Water Research and Technology, 2022, 8, 1261-1276.	1.2	14
18	Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes. Current Opinion in Chemical Engineering, 2022, 36, 100830.	3.8	60

#	Article	IF	CITATIONS
19	Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Separation and Purification Technology, 2022, 293, 121115.	3.9	97
20	A review on electrochemical treatment of arsenic from aqueous medium. Chemical Engineering Communications, 2021, 208, 389-410.	1.5	32
21	An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere, 2021, 263, 127907.	4.2	77
22	Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Separation and Purification Technology, 2021, 254, 117570.	3.9	146
23	Potential role of biochar in advanced oxidation processes: A sustainable approach. Chemical Engineering Journal, 2021, 405, 126582.	6.6	129
24	A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. Journal of Cleaner Production, 2021, 278, 124014.	4.6	111
25	Iron-based persulfate activation process for environmental decontamination in water and soil. Chemosphere, 2021, 265, 129057.	4.2	122
26	Ultrasound aided heterogeneous Fenton degradation of Acid Blue 15 over green synthesized magnetite nanoparticles. Separation and Purification Technology, 2021, 266, 118230.	3.9	19
27	Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. Chemosphere, 2021, 269, 128739.	4.2	51
28	Arsenite removal from aqueous solution by aerated iron electrocoagulation process. Separation Science and Technology, 2021, 56, 184-193.	1.3	24
29	Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environmental Research, 2021, 194, 110656.	3.7	131
30	Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Science of the Total Environment, 2021, 771, 145291.	3.9	250
31	An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes. Journal of Water Process Engineering, 2021, 41, 102040.	2.6	60
32	Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications. Current Opinion in Solid State and Materials Science, 2021, 25, 100921.	5.6	99
33	Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere, 2021, 276, 130188.	4.2	84
34	Electro catalytic generation of reactive species at diamond electrodes and applications in microbial inactivation. Current Opinion in Electrochemistry, 2021, 30, 100849.	2.5	8
35	Performance of continuous aerated iron electrocoagulation process for arsenite removal from simulated groundwater and management of arsenic-iron sludge. Sustainable Energy Technologies and Assessments, 2021, 47, 101476.	1.7	10
36	A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review. Sustainable Energy Technologies and Assessments, 2021, 47, 101353.	1.7	22

#	Article	IF	CITATIONS
37	Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements. Current Opinion in Solid State and Materials Science, 2021, 25, 100941.	5.6	145
38	Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108631.	1.8	96
39	Soil as Heterogeneous Fenton Catalyst for the Abatement of Organic Pollutants. Environmental Chemistry for A Sustainable World, 2021, , 519-537.	0.3	0
40	Boron-doped diamond electrodes for the mineralization of organic pollutants in the real wastewater. Current Opinion in Electrochemistry, 2021, 30, 100855.	2.5	18
41	Advanced Treatment of Real Wastewater Effluents by an Electrochemical Approach. Environmental Chemistry for A Sustainable World, 2021, , 85-122.	0.3	0
42	Continuous treatability of oily wastewater from locomotive wash facilities by electrocoagulation. Separation Science and Technology, 2020, 55, 583-589.	1.3	17
43	Optimization of batch electrocoagulation process using Box-Behnken experimental design for the treatment of crude vegetable oil refinery wastewater. Journal of Dispersion Science and Technology, 2020, 41, 592-599.	1.3	21
44	Heterogeneous Fenton process coupled with microfiltration for the treatment of water with higher arsenic content. Chemical Engineering Communications, 2020, 207, 1646-1657.	1.5	10
45	Industrial wastewater treatment by electrocoagulation process. Separation Science and Technology, 2020, 55, 3195-3227.	1.3	85
46	Photoelectro-peroxone process for the degradation of reactive azo dye in aqueous solution. Separation Science and Technology, 2020, 55, 2550-2559.	1.3	11
47	Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. Journal of Environmental Management, 2020, 259, 110011.	3.8	63
48	Importance of Chloride Addition on Arsenite Removal by Aluminium Electrocoagulation. ChemistrySelect, 2020, 5, 10567-10573.	0.7	10
49	Optical Sensing of Copper and Its Removal by Different Environmental Technologies. ChemistrySelect, 2020, 5, 10432-10474.	0.7	5
50	Treatment of Arseniteâ€Contaminated Water by Electrochemical Advanced Oxidation Processes. ChemElectroChem, 2020, 7, 2418-2423.	1.7	24
51	Importance of Graphene in the Electro-Fenton Process. ACS Omega, 2020, 5, 4725-4732.	1.6	68
52	Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process. Waste Management, 2020, 106, 1-11.	3.7	56
53	Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. Chemosphere, 2020, 251, 126437.	4.2	102
54	Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, 2020, 253, 126652.	4.2	108

#	Article	IF	CITATIONS
55	Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes. Chemosphere, 2019, 237, 124419.	4.2	82
56	Wastewater treatment by microbial fuel cell coupled with peroxicoagulation process. Clean Technologies and Environmental Policy, 2019, 21, 2033-2045.	2.1	28
57	Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment, 2019, 696, 133961.	3.9	230
58	Sono-electro-chemical Treatment of Reactive Black 5 Dye and Real Textile Effluent Using MnSO4/Na2S2O8 Electrolytes. Arabian Journal for Science and Engineering, 2019, 44, 9987-9996.	1.7	17
59	An overview of environmental sustainability in cement and steel production. Journal of Cleaner Production, 2019, 231, 856-871.	4.6	147
60	Environmental Applications of Boronâ€Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem, 2019, 6, 2124-2142.	1.7	114
61	Environmental Applications of Boronâ€Doped Diamond Electrodes: 2. Soil Remediation and Sensing Applications. ChemElectroChem, 2019, 6, 2143-2156.	1.7	45
62	Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst. Chemosphere, 2018, 200, 446-454.	4.2	87
63	Review of zero-valent aluminium based water and wastewater treatment methods. Chemosphere, 2018, 200, 621-631.	4.2	75
64	Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate. Journal of Environmental Management, 2018, 210, 328-337.	3.8	114
65	An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 2018, 197, 210-227.	4.2	814
66	Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere, 2018, 205, 587-593.	4.2	97
67	Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chemical Engineering Journal, 2018, 348, 67-73.	6.6	189
68	Mechanism of Treatment Methods of Arsenic-Contaminated Water. , 2018, , 405-455.		3
69	Removal of organic pollutants by peroxicoagulation. Environmental Chemistry Letters, 2018, 16, 1283-1292.	8.3	50
70	Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere, 2018, 210, 38-43.	4.2	126
71	Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye. Journal of Environmental Management, 2018, 226, 320-328.	3.8	105
72	Electrochemical advanced oxidation processes for the abatement of persistent organic pollutants. Chemosphere, 2018, 209, 17-19.	4.2	19

#	Article	IF	CITATIONS
73	Potential Use of Hibiscus Rosa-Sinensis Leaf Extract for the Destabilization of Turbid Water. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	11
74	Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere, 2017, 181, 418-432.	4.2	245
75	Removal of Chromium and Iron from Real Textile Wastewater by Sorption on Soils. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	1.2	4
76	Combined Electro-Fenton and Biological Processes for the Treatment of Industrial Textile Effluent: Mineralization and Toxicity Analysis. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	1.2	29
77	Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environmental Science and Pollution Research, 2017, 24, 27047-27069.	2.7	113
78	Heterogeneous Electro-Fenton Process: Principles and Applications. Handbook of Environmental Chemistry, 2017, , 85-110.	0.2	28
79	Performance of Natural Coagulant Extracted from Plantago ovata Seed for the Treatment of Turbid Water. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	13
80	Treatment of Stabilized Leachate by Ferrous-Activated Persulfate Oxidative System. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	1.2	32
81	STUDIES ON THE REMOVAL OF PHOSPHATE FROM WATER BY ELECTROCOAGULATION WITH ALUMINIUM PLATE ELECTRODES. Environmental Engineering and Management Journal, 2017, 16, 2293-2301.	0.2	11
82	Effect of Solution pH on Leachate Treatment Mechanism of Peroxicoagulation Process. Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 20, .	1.2	19
83	Investigation of Biobarrier for Leachate Containment through Batch and Continuous Flow Studies. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	4
84	Granular activated carbon as a particle electrode in threeâ€dimensional electrochemical treatment of reactive black B from aqueous solution. Environmental Progress and Sustainable Energy, 2016, 35, 1616-1622.	1.3	39
85	Removal of reactive magenta-MB from aqueous solution by persulphate-based advanced oxidation process. Desalination and Water Treatment, 2016, 57, 11872-11878.	1.0	23
86	Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Advances, 2016, 6, 5330-5340.	1.7	103
87	Investigation on the working performance of partitionable-space enhanced coagulation reactor. Separation Science and Technology, 2016, 51, 1220-1226.	1.3	2
88	Removal of organics from bilge water by batch electrocoagulation process. Separation and Purification Technology, 2016, 159, 108-115.	3.9	104
89	Comparative removal of Magenta MB from aqueous solution by homogeneous and heterogeneous photo-Fenton processes. Desalination and Water Treatment, 2016, 57, 12832-12841.	1.0	19
90	Optimization of salicylic acid removal by electro Fenton process in a continuous stirred tank reactor using response surface methodology. Desalination and Water Treatment, 2016, 57, 4234-4244.	1.0	15

#	Article	IF	CITATIONS
91	Low Cost Biosorbent 'Cyperus Rotundus' for Removal of Cu(II) and Zn(II) from Aqueous Solution with Acid and Alkali Treatments: Kinetic and Equilibrium Studies. Advanced Porous Materials, 2016, 4, 46-53.	0.3	0
92	Electro Fenton oxidation for the removal of Rhodamine B from aqueous solution in a bubble column reactor under continuous mode. Desalination and Water Treatment, 2015, 55, 263-271.	1.0	23
93	Laboratory Study on Leachate Treatment by Electrocoagulation Using Fly Ash and Bottom Ash as Supporting Electrolytes. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19, .	1.2	24
94	Textile Wastewater Treatment by Electro-Fenton Process in Batch and Continuous Modes. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19, .	1.2	27
95	Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Advances, 2015, 5, 40552-40577.	1.7	442
96	Pineapple leaf (<i>Ananas comosus</i>) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalination and Water Treatment, 2015, 54, 2041-2054.	1.0	37
97	Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution. Desalination and Water Treatment, 2015, 53, 109-118.	1.0	90
98	Alkali-treated fly ash for the removal of fluoride from aqueous solutions. Desalination and Water Treatment, 2014, 52, 3466-3476.	1.0	33
99	NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system. Separation and Purification Technology, 2014, 132, 568-576.	3.9	87
100	Removal of Rhodamine B from aqueous solution using graphite–graphite electro-Fenton system. Desalination and Water Treatment, 2014, 52, 1872-1877.	1.0	70
101	Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Advances, 2014, 4, 5698.	1.7	166
102	Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics. RSC Advances, 2014, 4, 27946.	1.7	82
103	Electrolytic removal of Rhodamine B from aqueous solution by peroxicoagulation process. Environmental Science and Pollution Research, 2014, 21, 8585-8594.	2.7	53
104	Iron-loaded mangosteen as a heterogeneous Fenton catalyst for the treatment of landfill leachate. Environmental Science and Pollution Research, 2014, 21, 10900-10907.	2.7	52
105	Comparative Removal of Rhodamine B from Aqueous Solution by Electroâ€ <scp>F</scp> enton and Electroâ€ <scp>F</scp> entonâ€ <scp>L</scp> ike Processes. Clean - Soil, Air, Water, 2014, 42, 779-784.	0.7	55
106	Treatment of stabilized landfill leachate using peroxicoagulation process. Separation and Purification Technology, 2014, 129, 64-70.	3.9	52
107	Electroâ€Fenton Oxidation of Salicylic Acid from Aqueous Solution: Batch Studies and Degradation Pathway. Clean - Soil, Air, Water, 2014, 42, 1701-1711.	0.7	48
108	Adsorptive removal of Pb(II) from aqueous solution using nano-sized hydroxyapatite. Applied Water Science, 2013, 3, 105-113.	2.8	51

#	Article	IF	CITATIONS
109	Use of combined coagulation-adsorption process as pretreatment of landfill leachate. Iranian Journal of Environmental Health Science & Engineering, 2013, 10, 24.	1.8	43
110	Use of furnace slag and welding slag as replacement for sand in concrete. International Journal of Energy and Environmental Engineering, 2013, 4, 3.	1.3	25
111	Utilization of textile effluent wastewater treatment plant sludge as brick material. Journal of Material Cycles and Waste Management, 2013, 15, 564-570.	1.6	50
112	Novel Agricultural Waste Adsorbent,Cyperus rotundus, for Removal of Heavy Metal Mixtures from Aqueous Solutions. Environmental Engineering Science, 2013, 30, 74-81.	0.8	12
113	Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 2013, 20, 2099-2132.	2.7	541
114	Fluoride sorption by treated fly ash: kinetic and isotherm studies. Journal of Material Cycles and Waste Management, 2013, 15, 381-392.	1.6	10
115	Electro-Fenton Method Oxidation of Salicylic Acid in Aqueous Solution with Graphite Electrodes. Environmental Engineering Science, 2013, 30, 750-756.	0.8	25
116	Modeling of Crystal Violet Adsorption by Bottom Ash Column. Water Environment Research, 2013, 85, 495-502.	1.3	5
117	Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite. Applied Water Science, 2012, 2, 187-197.	2.8	47
118	Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 2012, 299, 1-15.	4.0	810
119	REMOVAL OF Cd (II) FROM AQUEOUS SOLUTION BY ADSORPTION ONTO COIR PITH, AN AGRICULTURAL SOLID WASTE: BATCH EXPERIMENTAL STUDY. Environmental Engineering and Management Journal, 2011, 10,	0.2	14