Krzysztof Durka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5321548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excited-state photodynamics of pyrene-containing boronated dyes. Dyes and Pigments, 2022, 197, 109934.	3.7	4
2	Expedient Synthesis of Oxaboracyclic Compounds Based on Naphthalene and Biphenyl Backbone and Phaseâ€Dependent Luminescence of their Chelate Complexes. Chemistry - A European Journal, 2022, 28, .	3.3	2
3	Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 337, 111914.	4.4	2
4	The Effect of Symmetric and Asymmetric NHCs on the Structure and Catalytic Properties of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of <i>rac</i> -Lactide—Linking the Structure, Activity, and Stereoselectivity. Organometallics, 2021, 40, 1221-1234.	2.3	6
5	(Trifluoromethoxy)Phenylboronic Acids: Structures, Properties, and Antibacterial Activity. Molecules, 2021, 26, 2007.	3.8	6
6	Heavy-Atom Free <i>spiro</i> Organoboron Complexes As Triplet Excited States Photosensitizers for Singlet Oxygen Activation. Journal of Organic Chemistry, 2021, 86, 12714-12722.	3.2	7
7	Development of structurally extended benzosiloxaboroles – synthesis and in vitro biological evaluation. RSC Advances, 2021, 11, 25104-25121.	3.6	5
8	Design of solvatomorphic structures based on a polyboronated tetraphenyladamantane molecular tecton. CrystEngComm, 2021, 23, 8169-8182.	2.6	2
9	Boronate Covalent and Hybrid Organic Frameworks Featuring P III and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12688-12688.	3.3	4
10	Boronate Covalent and Hybrid Organic Frameworks Featuring P ^{III} and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12758-12768.	3.3	10
11	Differential Sensing of Saccharides Based on an Array of Fluorinated Benzosiloxaborole Receptors. Sensors, 2020, 20, 3540.	3.8	4
12	Ionic Porous Organic Polymers Based on Functionalized Tetraarylborates. Polymers, 2019, 11, 1070.	4.5	4
13	Experimental and Theoretical Insights into Molecular and Solid-State Properties of Isomeric Bis(salicylaldehydes). Journal of Physical Chemistry A, 2019, 123, 8674-8689.	2.5	2
14	Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations. Crystals, 2019, 9, 109.	2.2	10
15	Dopamine/2-Phenylethylamine Sensitivity of Ion-Selective Electrodes Based on Bifunctional-Symmetrical Boron Receptors. Sensors, 2019, 19, 283.	3.8	8
16	Cationic and Betaine-Type Boronated Acridinium Dyes: Synthesis, Characterization, and Photocatalytic Activity. ACS Omega, 2019, 4, 2482-2492.	3.5	15
17	1,4-Phenylene-bis-((1-methyl-1H-pyrazol-5-yl)borinic 8-oxyquinolinate) as a photoredox catalyst in the atom transfer radical addition of iodoperfluoroalkanes to alkenyl groups bearing organoboron compounds. Tetrahedron Letters, 2019, 60, 1918-1923.	1.4	5
18	The effect of locking π-conjugation in organoboron moieties in the structures of luminescent tetracoordinate boron complexes. Dalton Transactions, 2019, 48, 8642-8663.	3.3	24

KRZYSZTOF DURKA

#	Article	IF	CITATIONS
19	Antimicrobial and KPC/AmpC inhibitory activity of functionalized benzosiloxaboroles. European Journal of Medicinal Chemistry, 2019, 171, 11-24.	5.5	15
20	Ground-State Charge-Density Distribution in a Crystal of the Luminescent <i>ortho</i> -Phenylenediboronic Acid Complex with 8-Hydroxyquinoline. Journal of Physical Chemistry A, 2018, 122, 4508-4520.	2.5	4
21	An intramolecular ortho-assisted activation of the silicon–hydrogen bond in arylsilanes: an experimental and theoretical study. Dalton Transactions, 2018, 47, 3705-3716.	3.3	11
22	Synthesis of tetraarylborates <i>via</i> tetralithio intermediates and the effect of polar functional groups and cations on their crystal structures. Dalton Transactions, 2018, 47, 16627-16637.	3.3	6
23	The effect of conformational isomerism on the optical properties of bis(8-oxyquinolato) diboron complexes with a 2,2′-biphenyl backbone. Dalton Transactions, 2018, 47, 15670-15684.	3.3	4
24	Impact of High Pressure on Metallophilic Interactions and Its Consequences for Spectroscopic Properties of a Model Tetranuclear Silver(I)–Copper(I) Complex in the Solid State. Inorganic Chemistry, 2018, 57, 8509-8520.	4.0	10
25	Merging photoredox catalysis with allylboration. The photochemical perfluoroalkylation of unsaturated potassium alkyltrifluoroborates and synthesis of fluorinated alcohols. Tetrahedron Letters, 2018, 59, 2700-2703.	1.4	9
26	Synthesis, characterization and photoluminescence of 8-oxyquinolinato organoboron complexes derived from pyrazole. Tetrahedron Letters, 2017, 58, 1185-1189.	1.4	6
27	Visible-light-promoted alkylation of unsaturated MIDA boronates using Ru(bpy) 3 Cl 2 as the photoredox catalyst. Tetrahedron Letters, 2017, 58, 2162-2165.	1.4	23
28	New class of easily-synthesisable and modifiable organic materials for applications in luminescent devices. Dyes and Pigments, 2017, 138, 267-277.	3.7	13
29	Synthesis and Transformations of Functionalized Benzosiloxaboroles. European Journal of Organic Chemistry, 2017, 2017, 818-826.	2.4	17
30	Hybrid Triazine-Boron Two-Dimensional Covalent Organic Frameworks: Synthesis, Characterization, and DFT Approach to Layer Interaction Energies. ACS Applied Materials & Interfaces, 2017, 9, 31129-31141.	8.0	20
31	Engineering of Solvatomorphs of the Luminescent Complex of <i>ortho</i> -Phenylenediboronic Acid and 8-Hydroxyquinoline. Crystal Growth and Design, 2017, 17, 6836-6851.	3.0	9
32	Highly Fluorescent Red-Light Emitting Bis(boranils) Based on Naphthalene Backbone. Journal of Organic Chemistry, 2017, 82, 8234-8241.	3.2	59
33	Finding Rules Governing Layered Architectures of Trifluoroborate Potassium Salts in the Solid State. Crystal Growth and Design, 2016, 16, 1687-1700.	3.0	10
34	Isomeric and Isostructural Oligothienylsilanes–Structurally Similar, Physicochemically Different: The Effect of Interplay between C–H···C(Ï€), S···C(Ĩ€), and Chalcogen S···S Interactions. Crystal Grov and Design, 2016, 16, 4292-4308.	/t b. 0	12
35	Benzosiloxaboroles: Silicon Benzoxaborole Congeners with Improved Lewis Acidity, High Diol Affinity, and Potent Bioactivity. Organometallics, 2015, 34, 2924-2932.	2.3	21
36	Synthesis and characterization of di-, tri- and tetraboronic acids based on phenyl- and thienylsilane cores. Journal of Organometallic Chemistry, 2015, 783, 1-9.	1.8	6

Krzysztof Durka

#	Article	IF	CITATIONS
37	Synthesis and structural characterization of selected silylated or germylated pyrazoleboronic acids. Tetrahedron Letters, 2015, 56, 1855-1859.	1.4	3
38	Nitrogen–boron coordination versus OH⋯N hydrogen bonding in pyridoxaboroles – aza analogues of benzoxaboroles. Dalton Transactions, 2015, 44, 16534-16546.	3.3	13
39	Efficient 8-oxyquinolinato emitters based on a 9,10-dihydro-9,10-diboraanthracene scaffold for applications in optoelectronic devices. Journal of Materials Chemistry C, 2015, 3, 1354-1364.	5.5	24
40	Crystal structure of (2′,3,6′-trichlorobiphenyl-2-yl)boronic acid tetrahydrofuran monosolvate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1471-1474.	0.5	2
41	Crystal structure of (2-benzyloxypyrimidin-5-yl)boronic acid. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1259-o1260.	0.2	2
42	Influence of Fluorination and Boronic Group Synergy on the Acidity and Structural Behavior of <i>>o</i> -Phenylenediboronic Acids. Organometallics, 2014, 33, 1608-1616.	2.3	19
43	Competition between hydrogen and halogen bonding in the structures of 5,10-dihydroxy-5,10-dihydroboranthrenes. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 157-171.	1.1	14
44	Combined Experimental and Computational Studies of Pyrazinamide and Nicotinamide in the Context of Crystal Engineering and Thermodynamics. Crystal Growth and Design, 2014, 14, 3453-3465.	3.0	35
45	Formation of dilithiated bis-(1H-pyrazol-1-yl)alkanes and their application in the synthesis of diboronic acids. Tetrahedron Letters, 2014, 55, 1234-1238.	1.4	8
46	Is Carbon Dioxide Able to Activate Halogen/Lithium Exchange?. European Journal of Organic Chemistry, 2014, 2014, 4562-4570.	2.4	9
47	Heteroleptic (2-Fluoro-3-pyridyl)arylborinic 8-Oxyquinolinates for the Potential Application in Organic Light-Emitting Devices. Inorganic Chemistry, 2013, 52, 10846-10859.	4.0	26
48	Substituent effect on benzylic lithiation of sulfides. Synthesis of diboronic acids derived from aryl–alkyl sulfides. Tetrahedron, 2013, 69, 3159-3166.	1.9	6
49	The Influence of Boronate Groups on the Selectivity of the Br–Li Exchange in Model Dibromoaryl Boronates. European Journal of Organic Chemistry, 2013, 2013, 3023-3032.	2.4	10
50	Influence of the Silyl Group on the Reactivity of Some Ortho-Lithiated Aryl Alkyl Sulfides. Organometallics, 2013, 32, 3145-3148.	2.3	5
51	Nanotubular Hydrogen-Bonded Organic Framework Architecture of 1,2-Phenylenediboronic Acid Hosting Ice Clusters. Crystal Growth and Design, 2013, 13, 4181-4185.	3.0	35
52	2-Methoxy-3-(trimethylsilyl)phenylboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1818-o1818.	0.2	1
53	Tandem Synthesis of 9,10â€Dihydroâ€9,10â€diboraanthracenes via Elusive <i>ortho</i> â€Lithiated Phenylboronates. European Journal of Organic Chemistry, 2013, 2013, 8315-8322.	2.4	27
54	(N→B)-4-Methyl-3-pyridyl[N-methyliminodiacetate-O,O′,N]borane. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3070-o3070.	0.2	0

KRZYSZTOF DURKA

#	Article	IF	CITATIONS
55	On the Directing Effect of Boronate Groups in the Lithiation of Boronated Thiophenes. European Journal of Organic Chemistry, 2012, 2012, 2208-2218.	2.4	15
56	Stability of some aryllithiums in the presence of cyano group: synthesis of biaromatic cyanoarylboronic acids and silanes. Applied Organometallic Chemistry, 2012, 26, 287-292.	3.5	3
57	Structural and Energetic Landscape of Fluorinated 1,4-Phenylenediboronic Acids. Crystal Growth and Design, 2012, 12, 3720-3734.	3.0	60
58	Polymorphism of a Model Arylboronic Azaester: Combined Experimental and Computational Studies. Crystal Growth and Design, 2011, 11, 1835-1845.	3.0	26
59	Functionalization of some benzylthioarylboronic acids by benzylic lithiation of their <i>N</i> â€butyldiethanolamine esters or lithium (triisopropoxy)borates. Applied Organometallic Chemistry, 2011, 25, 669-674.	3.5	1
60	(2,4-Dipropoxyphenyl)boronic acid. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3455-o3455.	0.2	1
61	Ammonia–triphenylborane. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3098-o3098.	0.2	2
62	Electrophilic ipso-iodination of silylated arylboronic acids. Journal of Organometallic Chemistry, 2010, 695, 2635-2643.	1.8	13
63	On the nature of the B⋯N interaction and the conformational flexibility of arylboronic azaesters. Physical Chemistry Chemical Physics, 2010, 12, 13126.	2.8	28
64	Rapid and Efficient Synthesis of (R)-Aryloxypropionic Acid Esters Under Microwave Irradiation. Synthetic Communications, 2010, 40, 3209-3213.	2.1	6
65	Functionalization of Dihalophenylboronic Acids by Deprotonation of Their <i>N</i> â€Butyldiethanolamine Esters. European Journal of Organic Chemistry, 2009, 2009, 4325-4332.	2.4	23
66	Design of a D3h-symmetry prismatic tris-(ferrocene-1,1Ê1-diyl) molecular cage bearing boronate ester linkages. Dalton Transactions, 0, , .	3.3	1