
Daniel Strand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5321539/publications.pdf Version: 2024-02-01

DANIEL STRAND

#	Article	IF	CITATIONS
1	The long-awaited synthesis and self-assembly of a small rigid <i>C</i> ₃ -symmetric trilactam. Chemical Communications, 2022, 58, 3751-3754.	4.1	1
2	Electro-mechanically switchable hydrocarbons based on [8]annulenes. Nature Communications, 2022, 13, 860.	12.8	10
3	A C–H Activation Approach to the Tricyclic Core of Glionitrin A and B. ACS Omega, 2022, 7, 12329-12341.	3.5	0
4	Copper(I) Catalyzed Decarboxylative Synthesis of Diareno[<i>a</i> , <i>e</i>]cyclooctatetraenes. Journal of Organic Chemistry, 2022, 87, 7501-7508.	3.2	1
5	A Unifying Bioinspired Synthesis of (â^')-Asperaculin A and (â^')-Penifulvin D. Organic Letters, 2021, 23, 3536-3540.	4.6	4
6	Stability of supported aerosol-generated nanoparticles in liquid media. Scientific Reports, 2021, 11, 9276.	3.3	0
7	Microsecond Photoluminescence and Photoreactivity of a Metal-Centered Excited State in a Hexacarbene–Co(III) Complex. Journal of the American Chemical Society, 2021, 143, 1307-1312.	13.7	50
8	Total Synthesis of (â^')-Glionitrin A and B Enabled by an Asymmetric Oxidative Sulfenylation of Triketopiperazines. Journal of the American Chemical Society, 2021, 143, 21218-21222.	13.7	8
9	Enantiotopic Discrimination by Coordinationâ€Desymmetrized <i>meso</i> â€Ligands. ChemCatChem, 2020, 12, 1575-1579.	3.7	1
10	Discovery of epi-Enprioline as a Novel Drug for the Treatment of Vincristine Resistant Neuroblastoma. International Journal of Molecular Sciences, 2020, 21, 6577.	4.1	3
11	A Stable Homoleptic Organometallic Iron(IV) Complex. Chemistry - A European Journal, 2020, 26, 12728-12732.	3.3	21
12	Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science, 2019, 363, 249-253.	12.6	249
13	Chiral Discrimination in Rhodium(I) Catalysis by 2,5-Disubstituted 1,3 <i>a</i> ,4,6 <i>a</i> -Tetrahydropenatalene Ligands—More Than Just a Twist of the Olefins?. ACS Omega, 2018, 3, 3622-3630.	3.5	15
14	Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 53-59.	2.1	10
15	Control of Enantioselectivity in Rhodium(I) Catalysis by Planar Chiral Dibenzo[<i>a</i> , <i>e</i>]cyclooctatetraenes. Chemistry - A European Journal, 2018, 24, 2344-2348.	3.3	22
16	Biological activity of doubly modified salinomycin analogs – Evaluation inÂvitro and exÂvivo. European Journal of Medicinal Chemistry, 2018, 156, 510-523.	5.5	30
17	The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS Central Science, 2018, 4, 760-767.	11.3	58
18	Activity of Single and Doubleâ€modified Salinomycin Analogs against Primary Acute Lymphoblastic Cells In Vitro. FASEB Journal, 2018, 32, 836.15.	0.5	0

DANIEL STRAND

#	Article	IF	CITATIONS
19	Bivalent polyether ionophores: Synthesis and biological evaluation of C2-symmetric salinomycin dimers. Tetrahedron Letters, 2017, 58, 2396-2399.	1.4	11
20	Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy. Cell Cycle, 2017, 16, 2128-2138.	2.6	22
21	Hydroxylated oxanes as xyloside analogs for determination of the minimal binding requirements of β4GalT7. Tetrahedron Letters, 2017, 58, 3466-3469.	1.4	6
22	Structure–Activity Relationships in Salinomycin: Cytotoxicity and Phenotype Selectivity of Semiâ€synthetic Derivatives. Chemistry - A European Journal, 2017, 23, 2077-2083.	3.3	30
23	Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids. ACS Medicinal Chemistry Letters, 2016, 7, 635-640.	2.8	30
24	Allotwinning and OD-structures – the example of malonamide. Zeitschrift Fur Kristallographie - Crystalline Materials, 2016, 231, 623-629.	0.8	4
25	Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs. BMC Cancer, 2016, 16, 145.	2.6	38
26	Cyclometallated gold(iii) aryl-pyridine complexes as efficient catalysts for three-component synthesis of substituted oxazoles. Dalton Transactions, 2015, 44, 5347-5353.	3.3	36
27	Iridium Catalyzed Carbocyclizations: Efficient (5+2) Cycloadditions of Vinylcyclopropanes and Alkynes. Chemistry - A European Journal, 2015, 21, 531-535.	3.3	44
28	Semisynthesis of SY-1 for Investigation of Breast Cancer Stem Cell Selectivity of C-Ring-Modified Salinomycin Analogues. ACS Chemical Biology, 2014, 9, 1587-1594.	3.4	35
29	Synthesis of Substituted Oxazoles from <i>N</i> â€Benzyl Propargyl Amines and Acid Chlorides. European Journal of Organic Chemistry, 2013, 2013, 4578-4585.	2.4	22
30	Synthesis of Formylsilanes through Oxidative Cleavage of α-Silyl Glycols. Journal of Organic Chemistry, 2013, 78, 12268-12273.	3.2	6
31	Synthetic modification of salinomycin: selective O-acylation and biological evaluation. Chemical Communications, 2013, 49, 9944.	4.1	56
32	Catalytic Threeâ€Component Domino Reaction for the Preparation of Trisubstituted Oxazoles. Chemistry - A European Journal, 2013, 19, 7982-7988.	3.3	33
33	Allotwinning in a molecular crystal: (1 <i>R</i> ,3 <i>S</i>)-dimethyl 2-oxocyclohexane-1,3-dicarboxylate. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 509-513.	1.1	6
34	(6R*,10R*)-Dimethyl 1,4-dioxaspiro[4.5]decane-6,10-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o265-o265.	0.2	1
35	[(BINAP)Re(O)Cl3] as an efficient catalyst for olefination of chiral α-substituted aliphatic aldehydes. Journal of Organometallic Chemistry, 2010, 695, 2220-2224.	1.8	4
36	Cyclocarboamination of Alkynes with Aziridines: Synthesis of 2,3-Dihydropyrroles by a Catalyzed Formal [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2009, 131, 7528-7529.	13.7	138

DANIEL STRAND

#	Article	IF	CITATIONS
37	Total Synthesis of Iejimalide B. An Application of the Shiina Macrolactonization. Organic Letters, 2007, 9, 4619-4622.	4.6	32
38	Divergence en Route to Nonclassical Annonaceous Acetogenins. Synthesis of Pyranicin and Pyragonicinâ€. Journal of Organic Chemistry, 2006, 71, 1879-1891.	3.2	37
39	Synthesis of Pyragonicin. Organic Letters, 2005, 7, 2779-2781.	4.6	17
40	Total Synthesis of Pyranicin. Organic Letters, 2005, 7, 199-202.	4.6	49