Maria Angeles De La Torre-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5320449/publications.pdf

Version: 2024-02-01

Maria Angeles De La

#	Article	IF	CITATIONS
1	Monothiol glutaredoxins: a common domain for multiple functions. Cellular and Molecular Life Sciences, 2007, 64, 1518-1530.	5.4	200
2	Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. Journal of Cell Science, 2006, 119, 4554-4564.	2.0	181
3	Regulation of the Cell Integrity Pathway by Rapamycin-sensitive TOR Function in Budding Yeast. Journal of Biological Chemistry, 2002, 277, 43495-43504.	3.4	125
4	Pkc1 and the Upstream Elements of the Cell Integrity Pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, Are Required for Cellular Responses to Oxidative Stress. Journal of Biological Chemistry, 2005, 280, 9149-9159.	3.4	124
5	Nuclear Monothiol Glutaredoxins of Saccharomyces cerevisiae Can Function as Mitochondrial Glutaredoxins. Journal of Biological Chemistry, 2004, 279, 51923-51930.	3.4	91
6	Structure-Function Analysis of Yeast Grx5 Monothiol Glutaredoxin Defines Essential Amino Acids for the Protein. Journal of Biological Chemistry, 2002, 277, 37590-37596.	3.4	65
7	Sit4 Is Required for Proper Modulation of the Biological Functions Mediated by Pkc1 and the Cell Integrity Pathway inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33468-33476.	3.4	64
8	Mtl1 Is Required to Activate General Stress Response through Tor1 and Ras2 Inhibition under Conditions of Glucose Starvation and Oxidative Stress. Journal of Biological Chemistry, 2010, 285, 19521-19531.	3.4	52
9	Glutaredoxins Grx4 and Grx3 of <i>Saccharomyces cerevisiae</i> Play a Role in Actin Dynamics through Their Trx Domains, Which Contributes to Oxidative Stress Resistance. Applied and Environmental Microbiology, 2010, 76, 7826-7835.	3.1	44
10	Coping With Oxidative Stress. The Yeast Model. Current Drug Targets, 2015, 16, 2-12.	2.1	37
11	Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1. Microbiology (United Kingdom), 2007, 153, 3667-3676.	1.8	35
12	Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative conditions and TOR blockade. Fungal Genetics and Biology, 2012, 49, 903-914.	2.1	25
13	The MAP Kinase Slt2 Is Involved in Vacuolar Function and Actin Remodeling in Saccharomyces cerevisiae Mutants Affected by Endogenous Oxidative Stress. Applied and Environmental Microbiology, 2013, 79, 6459-6471.	3.1	21
14	Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast. Free Radical Biology and Medicine, 2017, 103, 107-120.	2.9	19
15	A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194414.	1.9	19
16	How Budding Yeast Sense and Transduce the Oxidative Stress Signal and the Impact in Cell Growth and Morphogenesis. Current Protein and Peptide Science, 2010, 11, 669-679.	1.4	16
17	Two proteins from <i>Saccharomyces cerevisiae</i> : Pfy1 and Pkc1, play a dual role in activating actin polymerization and in increasing cell viability in the adaptive response to oxidative stress. FEMS Yeast Research, 2009, 9, 1196-1207.	2.3	15
18	<scp>T</scp> or1, <scp>S</scp> ch9 and <scp>PKA</scp> downregulation in quiescence rely on <scp>M</scp> tl1 to preserve mitochondrial integrity and cell survival. Molecular Microbiology, 2015, 97, 93-109.	2.5	13

Maria Angeles De La

#	Article	IF	CITATIONS
19	Bulk autophagy induction and life extension is achieved when iron is the only limited nutrient in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2021, 478, 811-837.	3.7	12
20	Signal flow between CWI/TOR and CWI/RAS in budding yeast under conditions of oxidative stress and glucose starvation. Communicative and Integrative Biology, 2010, 3, 555-557.	1.4	11
21	Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Applied and Environmental Microbiology, 2020, 86, .	3.1	8
22	The MAPK Slt2/Mpk1 plays a role in iron homeostasis through direct regulation of the transcription factor Aft1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118974.	4.1	8
23	The Cell Wall Integrity Receptor Mtl1 Contributes to Articulate Autophagic Responses When Glucose Availability Is Compromised. Journal of Fungi (Basel, Switzerland), 2021, 7, 903.	3.5	7
24	Pkc1 and actin polymerisation activities play a role in ribosomal gene repression associated with secretion impairment caused by oxidative stress. FEMS Yeast Research, 2011, 11, 656-659.	2.3	2
25	Both human and soya bean ferritins highly improve the accumulation of bioavailable iron and contribute to extend the chronological life in budding yeast. Microbial Biotechnology, 2021, , .	4.2	2