
Bernadette Allinquant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5320123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development (Cambridge), 2004, 131, 2173-2181.	2.5	303
2	Functions of Al², sAPPl± and sAPPl² : similarities and differences. Journal of Neurochemistry, 2012, 120, 99-108.	3.9	171
3	Subcellular Topography of Neuronal Aβ Peptide in APPxPS1 Transgenic Mice. American Journal of Pathology, 2004, 165, 1465-1477.	3.8	150
4	Axonal Amyloid Precursor Protein Expressed by Neurons in Vitro Is Present in a Membrane Fraction with Caveolae-like Properties. Journal of Biological Chemistry, 1996, 271, 7640-7644.	3.4	132
5	The Amyloid Precursor Protein Interacts with GoHeterotrimeric Protein within a Cell Compartment Specialized in Signal Transduction. Journal of Neuroscience, 1999, 19, 1717-1727.	3.6	103
6	SET protein (TAF1β, I2PP2A) is involved in neuronal apoptosis induced by an amyloid precursor protein cytoplasmic subdomain. FASEB Journal, 2005, 19, 1905-1907.	0.5	102
7	Activity requires soluble amyloid precursor protein α to promote neurite outgrowth in neural stem cellâ€derived neurons via activation of the MAPK pathway. European Journal of Neuroscience, 2008, 28, 871-882.	2.6	97
8	Secreted Amyloid Precursor Protein β and Secreted Amyloid Precursor Protein α Induce Axon Outgrowth In Vitro through Egr1 Signaling Pathway. PLoS ONE, 2011, 6, e16301.	2.5	74
9	A Short Cytoplasmic Domain of the Amyloid Precursor Protein Induces Apoptosis In Vitro and In Vivo. Molecular and Cellular Neurosciences, 2001, 18, 503-511.	2.2	70
10	sAβPPα Improves Hippocampal NMDA-Dependent Functional Alterations Linked to Healthy Aging. Journal of Alzheimer's Disease, 2015, 48, 927-935.	2.6	27
11	Plasma amyloid beta predicts conversion to dementia in subjects with mild cognitive impairment: The BALTAZAR study. Alzheimer's and Dementia, 2022, 18, 2537-2550.	0.8	21
12	Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A. BMC Neuroscience, 2014, 15, 82.	1.9	18
13	Citrulline prevents age-related LTP decline in old rats. Scientific Reports, 2019, 9, 20138.	3.3	16
14	Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus. Age, 2013, 35, 1589-606.	3.0	14
15	SET translocation is associated with increase in caspase cleaved amyloid precursor protein in CA1 of Alzheimer and Down syndrome patients. Neurobiology of Aging, 2014, 35, 958-968.	3.1	14
16	PAT1 induces cell death signal and SET mislocalization into the cytoplasm by increasing APP/APLP2 at the cell surface. Neurobiology of Aging, 2011, 32, 1099-1113.	3.1	8
17	New highly sensitive rodent and human tests for soluble amyloid precursor protein alpha quantification: preclinical and clinical applications in Alzheimer's disease. BMC Neuroscience, 2012, 13, 84.	1.9	8
18	Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis. Cellular and Molecular Life Sciences, 2019, 76, 4995-5009.	5.4	8

#	Article	IF	CITATIONS
19	PAT1 inversely regulates the surface Amyloid Precursor Protein level in mouse primary neurons. BMC Neuroscience, 2015, 16, 10.	1.9	6
20	Increases of SET level and translocation are correlated with tau hyperphosphorylation at ser202/thr205 in CA1 of Ts65Dn mice. Neurobiology of Aging, 2016, 46, 43-48.	3.1	6
21	Transient increase in sAPPα secretion in response to Aβ1–42 oligomers: an attempt of neuronal self-defense?. Neurobiology of Aging, 2018, 61, 23-35.	3.1	6
22	Soluble Amyloid Precursor Protein Alpha Interacts with alpha3-Na, K-ATPAse to Induce Axonal Outgrowth but Not Neuroprotection: Evidence for Distinct Mechanisms Underlying these Properties. Molecular Neurobiology, 2018, 55, 5594-5610.	4.0	6