David A Schiraldi

List of Publications by Citations

Source: https://exaly.com/author-pdf/53198/david-a-schiraldi-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 papers

5,646 citations

45 h-index

69 g-index

171 ext. papers

6,118 ext. citations

avg, IF

5.95 L-index

#	Paper	IF	Citations
166	Fibers from polypropylene/nano carbon fiber composites. <i>Polymer</i> , 2002 , 43, 1701-1703	3.9	310
165	Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. <i>Polymer</i> , 2005 , 46, 11640-11647	3.9	238
164	Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2002 , 40, 266	57-2666	5 ²³³
163	Surface-modified carbons as platinum catalyst support for PEM fuel cells. <i>Carbon</i> , 2007 , 45, 1506-1517	10.4	163
162	Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2118		130
161	Biodegradable pectin/clay aerogels. ACS Applied Materials & amp; Interfaces, 2013, 5, 1715-21	9.5	114
160	Cross-Linking and Modification of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by DielsAlder Reactions with Maleimides. <i>Macromolecules</i> , 1999 , 32, 5786-5792	5.5	112
159	Chemical Durability Studies of Perfluorinated Sulfonic Acid Polymers and Model Compounds under Mimic Fuel Cell Conditions. <i>Macromolecules</i> , 2007 , 40, 8695-8707	5.5	108
158	Temperature-Responsive Clay Aerogel P olymer Composites. <i>Macromolecules</i> , 2005 , 38, 9216-9220	5.5	106
157	Glass Transition Behavior of Clay Aerogel/Poly(vinyl alcohol) Composites. <i>Macromolecules</i> , 2006 , 39, 6537-6545	5.5	106
156	Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. <i>ACS Applied Materials & Discrete Applied & Disc</i>	9.5	105
155	Structure and Gas Barrier Properties of Poly(propylene-graft-maleic anhydride)/Phosphate Glass Composites Prepared by Microlayer Coextrusion. <i>Macromolecules</i> , 2010 , 43, 4230-4239	5.5	104
154	Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. <i>Polymer</i> , 2012 , 53, 5825-5831	3.9	103
153	Preparation and flammability of poly(vinyl alcohol) composite aerogels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 6790-6	9.5	101
152	Study of the morphology and properties of melt-mixed polycarbonate POSS nanocomposites. <i>European Polymer Journal</i> , 2009 , 45, 341-352	5.2	94
151	Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 643-50	9.5	92
150	Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay. <i>Biomacromolecules</i> , 2010 , 11, 2640-6	6.9	88

149	Elastic, low density epoxy/clay aerogel composites. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3525		82	
148	Reinforcement of Poly(ethylene terephthalate) Fibers with Polyhedral Oligomeric Silsesquioxanes (POSS). <i>High Performance Polymers</i> , 2005 , 17, 403-424	1.6	81	
147	Towards the unification of coenzyme B12-dependent diol dehydratase stereochemical and model studies: The bound radical mechanism. <i>Coordination Chemistry Reviews</i> , 1984 , 54, 1-22	23.2	79	
146	Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 1780-6	9.5	76	
145	Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane. <i>Polymer International</i> , 2005 , 54, 47-53	3.3	73	
144	Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. <i>Polymer</i> , 2014 , 55, 380-384	3.9	71	
143	Role of Specific Interactions and Solubility in the Reinforcement of Bisphenol A Polymers with Polyhedral Oligomeric Silsesquioxanes. <i>Macromolecules</i> , 2007 , 40, 4942-4952	5.5	70	
142	Two-photon 3D optical data storage via aggregate switching of excimer-forming dyes. <i>Advanced Materials</i> , 2011 , 23, 2425-9	24	66	
141	Foam-like materials produced from abundant natural resources. <i>Green Chemistry</i> , 2008 , 10, 1078	10	65	
140	Biologically Based Fiber-Reinforced/Clay Aerogel Composites. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 615-619	3.9	62	
139	Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 16227-36	9.5	60	
138	Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. <i>ACS Applied Materials & Description of Poly(vinyl alcohol)</i> , 9, 42258-42265	9.5	58	
137	Facile processing of clays into organically-modified aerogels. <i>AICHE Journal</i> , 2006 , 52, 1162-1168	3.6	58	
136	Biomass-Based Mechanically Strong and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. <i>ACS Applied Materials & Description of Supercapacitors and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. ACS Applied Materials & Description of Supercapacities and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. ACS Applied Materials & Description of Supercapacities and Electrically Conductive Polymer Aerogels and Their Application for Supercapacities and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. ACS Applied Materials & Description of Supercapacities and Electrical Supe</i>	9.5	57	
135	Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3059-3	<i>6</i> 67	56	
134	Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying. <i>Applied Clay Science</i> , 2010 , 50, 271-279	5.2	55	
133	Perfluorinated Polymer Electrolyte Membrane Durability. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 2006 , 46, 315-327		55	
132	Experimental Determination of Hansen Solubility Parameters for Select POSS and Polymer Compounds as a Guide to POSSPolymer Interaction Potentials. <i>Macromolecules</i> , 2012 , 45, 1931-1936	5.5	54	

131	Phosphonated poly(arylene ether)s as potential high temperature proton conducting materials. <i>Polymer</i> , 2011 , 52, 4709-4717	3.9	53
130	Structure Property Relationships and the Role of Processing in the Reinforcement of Nylon 6-POSS Blends. <i>Macromolecules</i> , 2012 , 45, 4650-4657	5.5	52
129	Solution Cross-Linked Natural Rubber (NR)/Clay Aerogel Composites. <i>Macromolecules</i> , 2011 , 44, 923-93	1 5.5	51
128	Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. <i>ACS Applied Materials & Dimensional Stability</i> , Mechanical Property, and Fire Safety.	9.5	50
127	Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. <i>Polymer</i> , 2015 , 61, 42-54	3.9	50
126	Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. <i>Polymer</i> , 2015 , 66, 86-93	3.9	48
125	Roll-to-roll fabrication of multilayer films for high capacity optical data storage. <i>Advanced Materials</i> , 2012 , 24, 5222-6, 5146	24	47
124	Biaxially oriented poly(propylene-g-maleic anhydride)/phosphate glass composite films for high gas barrier applications. <i>Polymer</i> , 2009 , 50, 598-604	3.9	47
123	Morphology and Thermomechanical Properties of Melt-Mixed Polyoxymethylene/Polyhedral Oligomeric Silsesquioxane Nanocomposites. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 846-8	838	46
122	Tuning alkylation reactions with temperature in near-critical water. AICHE Journal, 1998, 44, 2080-2087	3.6	45
121	Structure and property study of nylon-6/clay nanocomposite fiber. <i>Polymer International</i> , 2004 , 53, 2072	232978	44
120	Foamlike Xanthan Gum/Clay Aerogel Composites and Tailoring Properties by Blending with Agar. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 7680-7687	3.9	42
119	Influence of electrolyte and polymer loadings on mechanical properties of clay aerogels. <i>Langmuir</i> , 2010 , 26, 12198-202	4	42
118	Mineralization of clay/polymer aerogels: a bioinspired approach to composite reinforcement. <i>ACS Applied Materials & Divided M</i>	9.5	42
117	Novel Absorbent Materials Created via Ice Templating. <i>Macromolecular Materials and Engineering</i> , 2009 , 294, 570-574	3.9	41
116	Efficient Synthesis of 4,5,9,10-Tetrahydropyrene: A Useful Synthetic Intermediate for the Synthesis of 2,7-Disubstituted Pyrenes. <i>Journal of Organic Chemistry</i> , 1999 , 64, 6888-6890	4.2	41
115	Flammability of Polymer/Clay Aerogel Composites: An Overview. <i>Polymer Reviews</i> , 2019 , 59, 1-24	14	41
114	Measuring thermal conductivities of anisotropic synthetic graphitellquid crystal polymer composites. <i>Polymer Composites</i> , 2006 , 27, 388-394	3	40

(2012-2013)

113	Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. <i>Journal of Applied Polymer Science</i> , 2013 , 129, 1637-1641	2.9	39	
112	Biomolecules as Flame Retardant Additives for Polymers: A Review. <i>Polymers</i> , 2020 , 12,	4.5	37	
111	Foam-like materials based on whey protein isolate. European Polymer Journal, 2013, 49, 3387-3391	5.2	36	
110	Preparation and thermal properties of graphene oxide/main chain benzoxazine polymer. <i>European Polymer Journal</i> , 2013 , 49, 3825-3833	5.2	35	
109	pH Tailoring Electrical and Mechanical Behavior of Polymer-Clay-Nanotube Aerogels. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1669-73	4.8	35	
108	Evaluation of electrochemical performance for surface-modified carbons as catalyst support in polymer electrolyte membrane (PEM) fuel cells. <i>Journal of Power Sources</i> , 2007 , 172, 530-541	8.9	34	
107	Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity. <i>ACS Applied Materials & Durable Hydrophobicity</i> . <i>ACS Applied Materials & Durable Hydrophobicity</i> .	9.5	34	
106	Biobased Poly(furfuryl alcohol)/Clay Aerogel Composite Prepared by a Freeze-Drying Process. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2601-2605	8.3	32	
105	Graphene arrested in laponite-water colloidal glass. <i>Langmuir</i> , 2012 , 28, 4009-15	4	29	
104	Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels. <i>ACS Applied Materials & Discrete Applied & Di</i>	9.5	28	
103	The effects of physical and chemical interactions in the formation of cellulose aerogels. <i>Polymer Bulletin</i> , 2010 , 65, 951-960	2.4	28	
102	Photochemical Cross-Linking of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate). <i>Macromolecules</i> , 2000 , 33, 1640-1645	5.5	27	
101	Bis(pentamethylcyclopentadienyl)chlorouranium.tetrahydrofuran oxidative-addition reaction. 2. A kinetic and mechanistic study. <i>Journal of the American Chemical Society</i> , 1981 , 103, 1875-1876	16.4	25	
100	Fiber Spinning, Structure, and Properties of Poly(ethylene terephthalate-co-4,4Ebibenzoate) Copolyesters. <i>Macromolecules</i> , 2002 , 35, 5123-5130	5.5	24	
99	The Formylation of Toluene in Trifluoromethanesulfonic Acid. <i>Journal of Catalysis</i> , 2001 , 199, 149-153	7.3	23	
98	Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol) aerogels. <i>Polymer</i> , 2016 , 91, 180-186	3.9	21	
97	The morphology and properties of melt-mixed polyoxymethylene/monosilanolisobutyl-POSS composites. <i>High Performance Polymers</i> , 2011 , 23, 457-467	1.6	21	
96	Oxygen permeability in thermoplastic polyurethanes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 681-693	2.6	20	

95	Pressure-Sensitive Chromogenic Polyesters. Macromolecular Materials and Engineering, 2009, 294, 244	-2 4 9)	20
94	Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypropylene and polycarbonate. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 1077-1	089	20
93	Effects of Fiber Reinforcement on Clay Aerogel Composites. <i>Materials</i> , 2015 , 8, 5440-5451	3.5	19
92	Structural changes in trisilanol POSS during nanocomposite melt processing. <i>Composite Interfaces</i> , 2005 , 11, 673-685	2.3	19
91	Memory effects in supramolecular networks of diacids and polyfunctional pyridine derivatives. Journal of Applied Polymer Science, 2004 , 92, 3097-3106	2.9	19
90	DielsAlder modification of poly(ethylene terephthalate-co-anthracene-2,6-carboxylate) with N-substituted maleimides. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 3256-3263	2.5	19
89	Model studies of coenzyme B12 dependent diol dehydratase. 2. A kinetic and mechanistic study focusing upon the cobalt participation or nonparticipation question. <i>Journal of the American Chemical Society</i> , 1983 , 105, 7605-7617	16.4	19
88	Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties. <i>ACS Applied Materials & Acs Applied </i>	9.5	18
87	Poly(arylene ether)s with Pendant Perfluoroalkyl Sulfonic Acid Groups as Proton-Exchange Membrane Materials. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 673-678	2.6	18
86	Oxygen barrier properties of PET copolymers containing bis(2-hydroxyethyl)hydroquinones. <i>Journal of Applied Polymer Science</i> , 2003 , 89, 934-942	2.9	18
85	The Rapid Chain Extension of Anthracene-Functional Polyesters by the Diels-Alder Reaction with Bismaleimides. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 1479-1487	2.6	18
84	Model studies of coenzyme B12 dependent diol dehydratase. 1. Synthetic, physical property, and product studies of two key, cobalt-bound, putative diol dehydratase intermediates. <i>Journal of the American Chemical Society</i> , 1983 , 105, 7592-7604	16.4	18
83	Improving oxygen barrier property of biaxially oriented PET/phosphate glass composite films. <i>Polymer</i> , 2017 , 127, 236-240	3.9	18
82	The balance between electronic and steric effects in the template-directed syntheses of [2]catenanes. <i>Tetrahedron</i> , 2001 , 57, 3799-3808	2.4	17
81	Pyrene and anthracene dicarboxylic acids as fluorescent brightening comonomers for polyester. Journal of Polymer Science Part A, 2000 , 38, 1291-1301	2.5	17
80	Supercritical Fluid Separation for Selective Quaternary Ammonium Salt Promoted Esterification of Terephthalic Acid. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 3622-3627	3.9	16
79	Effects of feather-fiber reinforcement on poly(vinyl alcohol)/clay aerogels: Structure, property and applications. <i>Polymer</i> , 2018 , 137, 201-208	3.9	15
78	Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning. <i>Journal of Materials Science</i> , 2014 , 49, 8252-8260	4.3	15

(2006-2015)

77	Low flammability foam-like materials based on epoxy, tannic acid, and sodium montmorillonite clay. <i>Green Materials</i> , 2015 , 3, 43-51	3.2	15
76	StructureBroperty evaluation of trisilanolphenyl POSSII /polysulfone composites as a guide to POSS melt blending. <i>Journal of Applied Polymer Science</i> , 2012 , 125, 2914-2919	2.9	15
75	Positional selectivity in an encounter-controlled reaction: base-catalyzed proton exchange in amidinium ions. <i>Journal of the American Chemical Society</i> , 1982 , 104, 196-201	16.4	15
74	High barrier biosourced polyester from dimethyl [2,2?-bifuran]-5,5?-dicarboxylate. <i>Polymer</i> , 2020 , 191, 122258	3.9	14
73	Polymer/clay aerogel-based glass fabric laminates. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 2945-	2 <u>9</u> .5 ₉ 3	14
72	Improving interfacial adhesion between thermoplastic polyurethane and copper foil using amino carboxylic acids. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 1738-1744	2.9	14
71	Effects of copper on the activity of sulfated zirconia catalysts for n-pentane isomerization. <i>Applied Catalysis A: General</i> , 2001 , 209, 165-177	5.1	14
70	Role of ionic interactions in the compatibility of polyester ionomers with poly(ethylene terephthalate) and nylon 6. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2006 , 44, 2091-2103	2.6	13
69	A thermo-rheological study on the structure property relationships in the reinforcement of nylon 6POSS blends. <i>Polymer</i> , 2014 , 55, 860-870	3.9	12
68	Mechanically strong ice-templated laponite/poly(vinyl alcohol) aerogels. <i>Materials Letters</i> , 2015 , 157, 155-157	3.3	12
67	Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz <c,e><1,2>oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: Synthesis, thermal degradation, combustion and pyrolysis behavior. <i>Journal of Analytical and Applied Pyrolysis</i>,</c,e>	6	12
66	2013 , 99, 40-48 Foam-like materials produced from milk and sodium montmorillonite clay using a freeze-drying process. <i>Green Materials</i> , 2013 , 1, 11-15	3.2	12
65	HDPE/EVOH Multilayered, High Barrier Films for Flexible Organic Photovoltaic Device Packaging. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 259-266	4.3	11
64	Property/Morphology Relationships in SEBS-Compatibilized HDPE/Poly(phenylene ether) Blends. <i>Macromolecules</i> , 2018 , 51, 6513-6523	5.5	11
63	Flammability of polyesters. <i>Polymer</i> , 2014 , 55, 2825-2830	3.9	11
62	Fabrication and mechanical characterization of lignin-based aerogels. <i>Green Materials</i> , 2014 , 2, 153-158	3.2	11
61	Photocrosslinkable copolyesters: Poly(alkylene terephthalate-co-1,4-phenylene bisacrylate). Journal of Polymer Science Part A, 2000 , 38, 2167-2176	2.5	11
60	Control of coefficient of thermal expansion in elastomers using boron nitride. <i>Journal of Applied Polymer Science</i> , 2006 , 102, 5153-5161	2.9	10

59	The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels. <i>Gels</i> , 2018 , 4,	4.2	9
58	Thermoplastic elastomers derived from bio-based monomers. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	9
57	Effect of comonomers on the rate of crystallization of PET: U-turn comonomers. <i>Journal of Applied Polymer Science</i> , 2001 , 81, 1675-1682	2.9	9
56	Thermal Tranesterification of Bis(hydroxymethyl)propane-1,3-diyl Units in (Poly(ethyl terephthalate) and Poly(butylene terephthalate): A Route to Thermoset Polyesters. <i>Macromolecules</i> , 1998 , 31, 2475-2479	5.5	9
55	Sustainable, Low Flammability, Mechanically-Strong Poly(vinyl alcohol) Aerogels. <i>Polymers</i> , 2018 , 10,	4.5	9
54	Oil absorption performance of polymer/clay aerogel materials. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 45844	2.9	8
53	Chemical Degradation of Membrane Polymer Model Compounds under Simulated Fuel Cell Conditions. <i>ECS Transactions</i> , 2010 , 33, 883-888	1	8
52	Structure and dynamic mechanical properties of poly(ethylene terephthalate-co-4,4?-bibenzoate) fibers. <i>Polymer</i> , 2007 , 48, 1651-1658	3.9	8
51	Isomerization of substituted biphenyls by superacid. A remarkable confluence of experiment and theory. <i>Journal of Organic Chemistry</i> , 2002 , 67, 2034-41	4.2	8
50	Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds. <i>Journal of Power Sources</i> , 2014 , 267, 316-322	8.9	7
49	Optimization of melt blending process of nylon 6-POSS: Improving mechanical properties of spun fibers. <i>Polymer Engineering and Science</i> , 2015 , 55, 1580-1588	2.3	7
48	Decolorization of colored poly(ethylene terephthalate) bottle flakes using hydrogen peroxide. Journal of Applied Polymer Science, 2008, 107, 3212-3220	2.9	7
47	Poly(ethylene terephthalate) modified with aromatic bisester diamides: Thermal and oxygen barrier properties. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 1668-1681	2.5	7
46	[Poly(ethylene terephthalate) ionomer]/silicate hybrid materials via polymer [h situ sol-gel reactions. <i>Journal of Applied Polymer Science</i> , 2002 , 84, 1749-1761	2.9	7
45	Thin-film polymerization and R ISIMetropolis Monte Carlo simulation of fluorinated aromatic copoly(ester mide)s. <i>Polymer</i> , 2005 , 46, 3914-3926	3.9	7
44	Comparison of Thermal Decomposition of Polystyrene Products vs. Bio-Based Polymer Aerogels. <i>Ohio Journal of Sciences</i> , 2017 , 117, 50	3	7
43	Copolyesters based on bibenzoic acids. <i>Polymer</i> , 2018 , 135, 120-130	3.9	7
42	Clay-Facilitated Aqueous Dispersion of Graphite and Poly(vinyl alcohol) Aerogels Filled with Binary Nanofillers. <i>Gels</i> , 2018 , 4,	4.2	6

41	Multilayered confinement of iPP/TPOSS and nylon 6/APOSS blends. <i>Polymer</i> , 2013 , 54, 6992-7003	3.9	6
40	Clay Aerogel Composite Materials. <i>Advances in Science and Technology</i> , 2010 , 63, 147-151	0.1	6
39	Influence of carbon support microstructure on the polarization behavior of a polymer electrolyte membrane fuel cell membrane electrode assemblies. <i>Journal of Power Sources</i> , 2010 , 195, 5167-5175	8.9	6
38	Crystal Structure and Composition of Poly(ethylene terephthalate-co-4,4Ebibenzoate). <i>Macromolecules</i> , 2004 , 37, 7643-7648	5.5	6
37	Effect of linear comonomers on the rate of crystallization of copolyesters. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 2696-2704	2.9	6
36	Bio-Based Flame Retardation of Acrylonitrile B utadiene S tyrene. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 372-388	4.3	6
35	The One-Pot Synthesis and Diels-Alder Reactivity of 2,5-Dihydrothiophene- 1,1-dioxide-3-carboxylic Acid. <i>Synthetic Communications</i> , 2003 , 33, 3643-3650	1.7	5
34	Crosslinking studies on poly(ethylene terephthalate-co-1,4-phenylene bisacrylate). <i>Journal of Applied Polymer Science</i> , 2004 , 91, 1698-1702	2.9	5
33	Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 4855.	2 ^{2.9}	5
32	Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process. <i>Materials</i> , 2018 , 11,	3.5	5
31	POSS(R) in Tight Places. Silicon, 2016, 8, 57-63	2.4	4
30	Improving the mechanical properties of clay/polymer aerogels by a simple dip-coating procedure. Journal of Applied Polymer Science, 2012, 126, 2004-2009	2.9	4
29	Modification of polymers using multilayered ⊞mart pellet⊞dditives: Part II. <i>Polymer</i> , 2011 , 52, 3226-323.	3 3.9	4
28	Modification of polymers using multilayered ⊠mart pellet dditives: Part I. <i>Polymer</i> , 2011 , 52, 2939-2946	i 3.9	4
27	Synthesis and Characterization of PET-Based Liquid Crystalline Copolyesters Containing 6-Oxynaphthalene-2-carboxylate and 6-Oxyanthracene-2-carboxylate Units. <i>Macromolecules</i> , 2003 , 36, 7543-7551	5.5	4
26	Synthesis and Thermal Characterization of Poly(alkylene 2,6-anthracenedicarboxylate)s. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 1776-1781	2.6	4
25	Foam-like polymer/clay aerogels which incorporate air bubbles. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	3
24	What Does It Take To Make a Stable POSS /Polymer Composite?. <i>ACS Symposium Series</i> , 2010 , 211-226	0.4	3

23	Sequence analysis and fiber properties of a blend of poly(ethylene terephthalate) and poly(ethylene terephthalate-co-4,4?-bibenzoate). <i>Journal of Applied Polymer Science</i> , 2004 , 93, 1793-18	10 3 .9	3
22	Hydroquinone and Resorcinol-Containing Copolyesters. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 1373-1381	2.6	3
21	A Combinatorial Method for Developing Deep Dye Polyesters. Textile Reseach Journal, 2002, 72, 153-15	551.7	3
20	Difunctional pyrene derivatives as fluorescent brightening agents for condensation polymers. <i>Dyes and Pigments</i> , 1999 , 43, 203-206	4.6	3
19	Thermo-rheological analysis of various chain extended recycled poly(ethylene terephthalate). <i>Polymer Engineering and Science</i> , 2020 , 60, 2511-2516	2.3	3
18	Structural interaction and gas barrier properties of ethylene-vinyl alcohol/tin phosphate glass composites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 989-998	2.6	2
17	Electrophoretic calcium phosphate mineralization of collagen hydrogels. <i>Green Materials</i> , 2015 , 3, 71-7	93.2	2
16	Incorporation of postconsumer polyurethane foam into a polymer/clay aerogel matrix. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	2
15	Anisotropic Clay Aerogel Composite Materials. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1188, 167		2
14	The Future of Polymers for Fuel Cell Membranes. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 2006 , 46, 215-217		2
13	Effect of polyethelene oxide on the thermal degradation of cellulose biofilm - Low cost material for soft tissue repair in dentistry. <i>Journal of Clinical and Experimental Dentistry</i> , 2017 , 9, e875-e878	1.4	2
12	Green Polymer Aerogels. ACS Symposium Series, 2015, 471-482	0.4	1
11	Polymer Aerogels 2015 , 1-18		1
10	Rapid screening test for flame retardation of wood, and its applicability to thermoplastic polymer systems. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46602	2.9	1
9	Synthesis and characterization of novel ethylene glycol polyesters containing terephthalic and 5-adamantylisophthalic acids. <i>Designed Monomers and Polymers</i> , 2003 , 6, 123-133	3.1	1
8	Clay Aerogel Supported Palladium Nanoparticles as Catalysts. <i>Gels</i> , 2016 , 2,	4.2	1
7	Morphology optimization of poly(ethylene terephthalate)/polyamide blends compatibilized via extension-dominated twin-screw extrusion. <i>Journal of Polymer Engineering</i> , 2021 , 41, 218-225	1.4	1
6	The Many Faces of Silicon and SILICON. <i>Silicon</i> , 2019 , 11, 2201-2201	2.4	

LIST OF PUBLICATIONS

5	Optical Data Storage: Roll-to-Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage (Adv. Mater. 38/2012). <i>Advanced Materials</i> , 2012 , 24, 5146-5146	24
4	Chemical Durability Studies of PFSA and Nonfluorinated PEM Materials. <i>ACS Symposium Series</i> , 2010 , 125-136	0.4
3	Responsive Polymer/Clay Aerogel Composites. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 847, 502	
2	Nanocomposites of Liquid Crystalline Polyhedral Oligomeric Silsesquioxane Particles and Liquid Crystalline Polymers. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 788, 9101	
1	Unfrustration of a frustrated liquid crystalline polymer. <i>Polymer</i> , 2018 , 158, 59-64	3.9