David A Schiraldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/53198/publications.pdf

Version: 2024-02-01

167 papers 6,687 citations

46918 47 h-index 74018 75 g-index

171 all docs

171 docs citations

171 times ranked

6271 citing authors

#	Article	IF	CITATIONS
1	Fibers from polypropylene/nano carbon fiber composites. Polymer, 2002, 43, 1701-1703.	1.8	353
2	Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer, 2005, 46, 11640-11647.	1.8	260
3	Effects of melt-processing conditions on the quality of poly(ethylene terephthalate) montmorillonite clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2661-2666.	2.4	245
4	Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon, 2007, 45, 1506-1517.	5.4	174
5	Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32557-32564.	4.0	157
6	Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. Journal of Materials Chemistry, 2009, 19, 2118.	6.7	146
7	Biodegradable Pectin/Clay Aerogels. ACS Applied Materials & Interfaces, 2013, 5, 1715-1721.	4.0	141
8	Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Applied Materials & Empty Interfaces, 2016, 8, 643-650.	4.0	134
9	Preparation and Flammability of Poly(vinyl alcohol) Composite Aerogels. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6790-6796.	4.0	125
10	Chemical Durability Studies of Perfluorinated Sulfonic Acid Polymers and Model Compounds under Mimic Fuel Cell Conditions. Macromolecules, 2007, 40, 8695-8707.	2.2	124
11	Cross-Linking and Modification of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by Dielsâ^Alder Reactions with Maleimides. Macromolecules, 1999, 32, 5786-5792.	2.2	121
12	Glass Transition Behavior of Clay Aerogel/Poly(vinyl alcohol) Composites. Macromolecules, 2006, 39, 6537-6545.	2.2	121
13	Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer, 2012, 53, 5825-5831.	1.8	119
14	Temperature-Responsive Clay Aerogelâ^'Polymer Composites. Macromolecules, 2005, 38, 9216-9220.	2.2	113
15	Structure and Gas Barrier Properties of Poly(propylene- <i>graft</i> maleic anhydride)/Phosphate Glass Composites Prepared by Microlayer Coextrusion. Macromolecules, 2010, 43, 4230-4239.	2.2	113
16	Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42258-42265.	4.0	104
17	Study of the morphology and properties of melt-mixed polycarbonate–POSS nanocomposites. European Polymer Journal, 2009, 45, 341-352.	2.6	101
18	Development of Biodegradable Foamlike Materials Based on Casein and Sodium Montmorillonite Clay. Biomacromolecules, 2010, 11, 2640-2646.	2.6	101

#	Article	IF	Citations
19	Efficient Approach to Improving the Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate. ACS Applied Materials & Emp; Interfaces, 2015, 7, 1780-1786.	4.0	98
20	Towards the unification of coenzyme B12-dependent diol dehydratase stereochemical and model studies: The bound radical mechanism. Coordination Chemistry Reviews, 1984, 54, 1-22.	9.5	93
21	Reinforcement of Poly(ethylene terephthalate) Fibers with Polyhedral Oligomeric Silsesquioxanes (POSS). High Performance Polymers, 2005, 17, 403-424.	0.8	85
22	Elastic, low density epoxy/clay aerogel composites. Journal of Materials Chemistry, 2007, 17, 3525.	6.7	84
23	Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer, 2014, 55, 380-384.	1.8	84
24	Twoâ€Photon 3D Optical Data Storage via Aggregate Switching of Excimerâ€Forming Dyes. Advanced Materials, 2011, 23, 2425-2429.	11.1	80
25	Biomass-Based Mechanically Strong and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9917-9924.	4.0	76
26	Role of Specific Interactions and Solubility in the Reinforcement of Bisphenol A Polymers with Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2007, 40, 4942-4952.	2.2	74
27	Fabrication and Properties of Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Composites. ACS Applied Materials & Earny; Interfaces, 2014, 6, 16227-16236.	4.0	74
28	Properties of poly(ethylene terephthalate) containing epoxy-functionalized polyhedral oligomeric silsesquioxane. Polymer International, 2005, 54, 47-53.	1.6	73
29	Foam-like materials produced from abundant natural resources. Green Chemistry, 2008, 10, 1078.	4.6	73
30	Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. ACS Applied Materials & Diversaces, 2017, 9, 22985-22993.	4.0	72
31	Flammability of Polymer/Clay Aerogel Composites: An Overview. Polymer Reviews, 2019, 59, 1-24.	5.3	71
32	Biologically Based Fiber-Reinforced/Clay Aerogel Composites. Industrial & Engineering Chemistry Research, 2008, 47, 615-619.	1.8	69
33	Perfluorinated Polymer Electrolyte Membrane Durability. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 315-327.	2.2	68
34	Phosphonated poly(arylene ether)s as potential high temperature proton conducting materials. Polymer, 2011, 52, 4709-4717.	1.8	67
35	Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying. Applied Clay Science, 2010, 50, 271-279.	2.6	66
36	Facile processing of clays into organically-modified aerogels. AICHE Journal, 2006, 52, 1162-1168.	1.8	65

#	Article	IF	Citations
37	Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer, 2015, 61, 42-54.	1.8	62
38	Solution Cross-Linked Natural Rubber (NR)/Clay Aerogel Composites. Macromolecules, 2011, 44, 923-931.	2.2	60
39	Experimental Determination of Hansen Solubility Parameters for Select POSS and Polymer Compounds as a Guide to POSS–Polymer Interaction Potentials. Macromolecules, 2012, 45, 1931-1936.	2.2	60
40	Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films. Industrial & Engineering Chemistry Research, 2005, 44, 3059-3067.	1.8	59
41	Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer, 2015, 66, 86-93.	1.8	59
42	Foamlike Xanthan Gum/Clay Aerogel Composites and Tailoring Properties by Blending with Agar. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 7680-7687.	1.8	58
43	Structure Property Relationships and the Role of Processing in the Reinforcement of Nylon 6-POSS Blends. Macromolecules, 2012, 45, 4650-4657.	2.2	54
44	Biomolecules as Flame Retardant Additives for Polymers: A Review. Polymers, 2020, 12, 849.	2.0	53
45	Morphology and Thermomechanical Properties of Meltâ€Mixed Polyoxymethylene/Polyhedral Oligomeric Silsesquioxane Nanocomposites. Macromolecular Materials and Engineering, 2010, 295, 846-858.	1.7	51
46	Rollâ€ŧoâ€Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage. Advanced Materials, 2012, 24, 5222-5226.	11.1	51
47	Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8287-8296.	4.0	51
48	Mineralization of Clay/Polymer Aerogels: A Bioinspired Approach to Composite Reinforcement. ACS Applied Materials & Divided Ma	4.0	50
49	Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13051-13057.	4.0	50
50	Tuning alkylation reactions with temperature in near-critical water. AICHE Journal, 1998, 44, 2080-2087.	1.8	49
51	Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 2013, 129, 1637-1641.	1.3	48
52	Biaxially oriented poly(propylene-g-maleic anhydride)/phosphate glass composite films for high gas barrier applications. Polymer, 2009, 50, 598-604.	1.8	47
53	Novel Absorbent Materials Created via Ice Templating. Macromolecular Materials and Engineering, 2009, 294, 570-574.	1.7	46
54	Structure and property study of nylon-6/clay nanocomposite fiber. Polymer International, 2004, 53, 2072-2078.	1.6	45

#	Article	IF	CITATIONS
55	Measuring thermal conductivities of anisotropic synthetic graphite–liquid crystal polymer composites. Polymer Composites, 2006, 27, 388-394.	2.3	45
56	Influence of Electrolyte and Polymer Loadings on Mechanical Properties of Clay Aerogels. Langmuir, 2010, 26, 12198-12202.	1.6	43
57	Foam-like materials based on whey protein isolate. European Polymer Journal, 2013, 49, 3387-3391.	2.6	43
58	Efficient Synthesis of 4,5,9,10-Tetrahydropyrene:Â A Useful Synthetic Intermediate for the Synthesis of 2,7-Disubstituted Pyrenes. Journal of Organic Chemistry, 1999, 64, 6888-6890.	1.7	42
59	Preparation and thermal properties of graphene oxide/main chain benzoxazine polymer. European Polymer Journal, 2013, 49, 3825-3833.	2.6	39
60	Evaluation of electrochemical performance for surface-modified carbons as catalyst support in polymer electrolyte membrane (PEM) fuel cells. Journal of Power Sources, 2007, 172, 530-541.	4.0	36
61	pH Tailoring Electrical and Mechanical Behavior of Polymer–Clay–Nanotube Aerogels. Macromolecular Rapid Communications, 2009, 30, 1669-1673.	2.0	36
62	Biobased Poly(furfuryl alcohol)/Clay Aerogel Composite Prepared by a Freeze-Drying Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 2601-2605.	3.2	35
63	Graphene Arrested in Laponite–Water Colloidal Glass. Langmuir, 2012, 28, 4009-4015.	1.6	34
64	The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels. Gels, 2018, 4, 33.	2.1	33
65	The effects of physical and chemical interactions in the formation of cellulose aerogels. Polymer Bulletin, 2010, 65, 951-960.	1.7	32
66	Photochemical Cross-Linking of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate). Macromolecules, 2000, 33, 1640-1645.	2.2	31
67	Bis(pentamethylcyclopentadienyl)chlorouranium.tetrahydrofuran oxidative-addition reaction. 2. A kinetic and mechanistic study. Journal of the American Chemical Society, 1981, 103, 1875-1876.	6.6	30
68	Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol) aerogels. Polymer, 2016, 91, 180-186.	1.8	27
69	Effects of feather-fiber reinforcement on poly(vinyl alcohol)/clay aerogels: Structure, property and applications. Polymer, 2018, 137, 201-208.	1.8	26
70	The Formylation of Toluene in Trifluoromethanesulfonic Acid. Journal of Catalysis, 2001, 199, 149-153.	3.1	25
71	The morphology and properties of melt-mixed polyoxymethylene/monosilanolisobutyl-POSS composites. High Performance Polymers, 2011, 23, 457-467.	0.8	25
72	Effects of Fiber Reinforcement on Clay Aerogel Composites. Materials, 2015, 8, 5440-5451.	1.3	25

#	Article	IF	Citations
7 3	Fiber Spinning, Structure, and Properties of Poly(ethylene terephthalate-co-4,4'-bibenzoate) Copolyesters. Macromolecules, 2002, 35, 5123-5130.	2.2	24
74	Oxygen permeability in thermoplastic polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 681-693.	2.4	24
75	Model studies of coenzyme B12 dependent diol dehydratase. 1. Synthetic, physical property, and product studies of two key, cobalt-bound, putative diol dehydratase intermediates. Journal of the American Chemical Society, 1983, 105, 7592-7604.	6.6	23
76	Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypropylene and polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1077-1089.	2.4	23
77	Pressureâ€Sensitive Chromogenic Polyesters. Macromolecular Materials and Engineering, 2009, 294, 244-249.	1.7	23
78	Model studies of coenzyme B12 dependent diol dehydratase. 2. A kinetic and mechanistic study focusing upon the cobalt participation or nonparticipation question. Journal of the American Chemical Society, 1983, 105, 7605-7617.	6.6	22
79	The balance between electronic and steric effects in the template-directed syntheses of [2]catenanes. Tetrahedron, 2001, 57, 3799-3808.	1.0	22
80	Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties. ACS Applied Materials & Interfaces, 2015, 7, 20208-20214.	4.0	22
81	Poly(arylene ether)s with Pendant Perfluoroalkyl Sulfonic Acid Groups as Protonâ€Exchange Membrane Materials. Macromolecular Chemistry and Physics, 2011, 212, 673-678.	1.1	21
82	Positional selectivity in an encounter-controlled reaction: base-catalyzed proton exchange in amidinium ions. Journal of the American Chemical Society, 1982, 104, 196-201.	6.6	20
83	Effects of copper on the activity of sulfated zirconia catalysts for n-pentane isomerization. Applied Catalysis A: General, 2001, 209, 165-177.	2.2	20
84	Diels-Alder modification of poly(ethylene terephthalate-co-anthracene-2,6-carboxylate) withN-substituted maleimides. Journal of Polymer Science Part A, 2002, 40, 3256-3263.	2.5	20
85	High barrier biosourced polyester from dimethyl [2,2′-bifuran]-5,5′-dicarboxylate. Polymer, 2020, 191, 122258.	1.8	20
86	Improving oxygen barrier property of biaxially oriented PET/phosphate glass composite films. Polymer, 2017, 127, 236-240.	1.8	20
87	Memory effects in supramolecular networks of diacids and polyfunctional pyridine derivatives. Journal of Applied Polymer Science, 2004, 92, 3097-3106.	1.3	19
88	The Rapid Chain Extension of Anthracene-Functional Polyesters by the Diels-Alder Reaction with Bismaleimides. Macromolecular Chemistry and Physics, 2005, 206, 1479-1487.	1.1	19
89	Structural changes in trisilanol POSS during nanocomposite melt processing. Composite Interfaces, 2005, 11, 673-685.	1.3	19

Role of ionic interactions in the compatibility of polyester ionomers with poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50_162 Td (term 90_162 Td (term 90_162 Td 90_162 Td

#	Article	IF	CITATIONS
91	Sustainable, Low Flammability, Mechanically-Strong Poly(vinyl alcohol) Aerogels. Polymers, 2018, 10, 1102.	2.0	19
92	Property/Morphology Relationships in SEBS-Compatibilized HDPE/Poly(phenylene ether) Blends. Macromolecules, 2018, 51, 6513-6523.	2.2	19
93	Improving the flame retardancy of polypropylene foam with piperazine pyrophosphate via multilayering coextrusion of film/foam composites. Journal of Applied Polymer Science, 2020, 137, 48552.	1.3	19
94	Pyrene and anthracene dicarboxylic acids as fluorescent brightening comonomers for polyester. Journal of Polymer Science Part A, 2000, 38, 1291-1301.	2.5	18
95	Oxygen barrier properties of PET copolymers containing bis(2-hydroxyethyl)hydroquinones. Journal of Applied Polymer Science, 2003, 89, 934-942.	1.3	18
96	Low flammability foam-like materials based on epoxy, tannic acid, and sodium montmorillonite clay. Green Materials, 2015, 3, 43-51.	1.1	18
97	Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenzā€ˆc,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: Synthesis, thermal degradation, combustion and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2013, 99, 40-48.	2.6	17
98	Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning. Journal of Materials Science, 2014, 49, 8252-8260.	1.7	17
99	Comparison of Thermal Decomposition of Polystyrene Products vs. Bio-Based Polymer Aerogels. Ohio Journal of Sciences, 2017, 117, 50.	0.3	17
100	Supercritical Fluid Separation for Selective Quaternary Ammonium Salt Promoted Esterification of Terephthalic Acid. Industrial & Engineering Chemistry Research, 1999, 38, 3622-3627.	1.8	16
101	Improving interfacial adhesion between thermoplastic polyurethane and copper foil using amino carboxylic acids. Journal of Applied Polymer Science, 2009, 112, 1738-1744.	1.3	16
102	Polymer/clay aerogelâ€based glass fabric laminates. Journal of Applied Polymer Science, 2012, 124, 2945-2953.	1.3	16
103	Structure–property evaluation of trisilanolphenyl POSS®/polysulfone composites as a guide to POSS melt blending. Journal of Applied Polymer Science, 2012, 125, 2914-2919.	1.3	15
104	Mechanically strong ice-templated laponite/poly(vinyl alcohol) aerogels. Materials Letters, 2015, 157, 155-157.	1.3	15
105	HDPE/EVOH Multilayered, High Barrier Films for Flexible Organic Photovoltaic Device Packaging. ACS Applied Polymer Materials, 2019, 1, 259-266.	2.0	14
106	Foam-like materials produced from milk and sodium montmorillonite clay using a freeze-drying process. Green Materials, 2013, 1, 11-15.	1.1	13
107	A thermo-rheological study on the structure property relationships inÂthe reinforcement of nylon 6–POSS blends. Polymer, 2014, 55, 860-870.	1.8	13
108	Thermoplastic elastomers derived from bioâ€based monomers. Journal of Applied Polymer Science, 2014, 131, .	1.3	12

109 Flamn			
	nability of polyesters. Polymer, 2014, 55, 2825-2830.	1.8	12
	ased Flame Retardation of Acrylonitrile–Butadiene–Styrene. ACS Applied Polymer Materials, 2021, 2-388.	2.0	12
111 Photo Polym	ocrosslinkable copolyesters: Poly(alkylene terephthalate-co-1,4-phenylene bisacrylate). Journal of ner Science Part A, 2000, 38, 2167-2176.	2.5	11
112 Fabric	cation and mechanical characterization of lignin-based aerogels. Green Materials, 2014, 2, 153-158.	1.1	11
	osorption performance of polymer/clay aerogel materials. Journal of Applied Polymer Science, , 135, 45844.	1.3	11
	noâ€rheological analysis of various chain extended recycled poly(ethylene terephthalate). Polymer leering and Science, 2020, 60, 2511-2516.	1.5	11
115 Copol	lyesters based on bibenzoic acids. Polymer, 2018, 135, 120-130.	1.8	11
116 Isome Theor	erization of Substituted Biphenyls by Superacid. A Remarkable Confluence of Experiment and ry. Journal of Organic Chemistry, 2002, 67, 2034-2041.	1.7	10
117 Contr Polym	rol of coefficient of thermal expansion in elastomers using boron nitride. Journal of Applied ner Science, 2006, 102, 5153-5161.	1.3	10
	lorization of colored poly(ethylene terephthalate) bottle flakes using hydrogen peroxide. al of Applied Polymer Science, 2008, 107, 3212-3220.	1.3	10
119			

#	Article	IF	Citations
127	Chemical Degradation of Membrane Polymer Model Compounds under Simulated Fuel Cell Conditions. ECS Transactions, 2010, 33, 883-888.	0.3	8
128	Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process. Materials, 2018, 11, 233.	1.3	8
129	Thin-film polymerization and â€~RIS' Metropolis Monte Carlo simulation of fluorinated aromatic copoly(ester–amide)s. Polymer, 2005, 46, 3914-3926.	1.8	7
130	Improving the mechanical properties of clay/polymer aerogels by a simple dipâ€coating procedure. Journal of Applied Polymer Science, 2012, 126, 2004-2009.	1.3	7
131	Multilayered confinement of iPP/TPOSS and nylon 6/APOSS blends. Polymer, 2013, 54, 6992-7003.	1.8	7
132	Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds. Journal of Power Sources, 2014, 267, 316-322.	4.0	7
133	Optimization of melt blending process of nylon 6â€ <scp>POSS</scp> : Improving mechanical properties of spun fibers. Polymer Engineering and Science, 2015, 55, 1580-1588.	1.5	7
134	Clay-Facilitated Aqueous Dispersion of Graphite and Poly(vinyl alcohol) Aerogels Filled with Binary Nanofillers. Gels, 2018, 4, 8.	2.1	7
135	Crystal Structure and Composition of Poly(ethylene terephthalate-co-4,4â€~-bibenzoate). Macromolecules, 2004, 37, 7643-7648.	2.2	6
136	Influence of carbon support microstructure on the polarization behavior of a polymer electrolyte membrane fuel cell membrane electrode assemblies. Journal of Power Sources, 2010, 195, 5167-5175.	4.0	6
137	Crosslinking studies on poly(ethylene terephthalate-co-1,4-phenylene bisacrylate). Journal of Applied Polymer Science, 2004, 91, 1698-1702.	1.3	5
138	Structural interaction and gas barrier properties of ethyleneâ€vinyl alcohol/tin phosphate glass composites. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 989-998.	2.4	5
139	Synthesis and Thermal Characterization of Poly(alkylene 2,6-anthracenedicarboxylate)s. Macromolecular Chemistry and Physics, 2001, 202, 1776-1781.	1.1	4
140	Synthesis and Characterization of PET-Based Liquid Crystalline Copolyesters Containing 6-Oxynaphthalene-2-carboxylate and 6-Oxyanthracene-2-carboxylate Units. Macromolecules, 2003, 36, 7543-7551.	2.2	4
141	Modification of polymers using multilayered "smart pellet―additives: Part II. Polymer, 2011, 52, 3226-3233.	1.8	4
142	Modification of polymers using multilayered "smart pellet―additives: Part I. Polymer, 2011, 52, 2939-2946.	1.8	4
143	Foamâ€ike polymer/clay aerogels which incorporate air bubbles. Journal of Applied Polymer Science, 2014, 131, .	1.3	4
144	Electrophoretic calcium phosphate mineralization of collagen hydrogels. Green Materials, 2015, 3, 71-79.	1.1	4

#	Article	IF	Citations
145	POSSⓇ in Tight Places. Silicon, 2016, 8, 57-63.	1.8	4
146	Reduction of PVA Aerogel Flammability by Incorporation of an Alkaline Catalyst. Gels, 2021, 7, 57.	2.1	4
147	Difunctional pyrene derivatives as fluorescent brightening agents for condensation polymers. Dyes and Pigments, 1999, 43, 203-206.	2.0	3
148	A Combinatorial Method for Developing Deep Dye Polyesters. Textile Reseach Journal, 2002, 72, 153-155.	1.1	3
149	Sequence analysis and fiber properties of a blend of poly(ethylene terephthalate) and poly(ethylene) Tj ETQq $1\ 1$	0.784314 1.3	rg&T /Overlo
150	Hydroquinone and Resorcinol-Containing Copolyesters. Macromolecular Chemistry and Physics, 2005, 206, 1373-1381.	1.1	3
151	Anisotropic Clay Aerogel Composite Materials. Materials Research Society Symposia Proceedings, 2009, 1188, 167.	0.1	3
152	What Does It Take To Make a Stable POSS (sup> $\hat{A}^{@}$ (/sup>/Polymer Composite?. ACS Symposium Series, 2010, , 211-226.	0.5	3
153	Clay Aerogel Supported Palladium Nanoparticles as Catalysts. Gels, 2016, 2, 15.	2.1	3
154	Morphology optimization of poly(ethylene terephthalate)/polyamide blends compatibilized <i>via</i> extension-dominated twin-screw extrusion. Journal of Polymer Engineering, 2021, 41, 218-225.	0.6	3
155	Effect of polyethelene oxide on the thermal degradation of cellulose biofilm - Low cost material for soft tissue repair in dentistry. Journal of Clinical and Experimental Dentistry, 2017, 9, 0-0.	0.5	3
156	The Future of Polymers for Fuel Cell Membranes. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 215-217.	2.2	2
157	Incorporation of postconsumer polyurethane foam into a polymer/clay aerogel matrix. Journal of Applied Polymer Science, 2015 , 132 , .	1.3	2
158	Green Polymer Aerogels. ACS Symposium Series, 2015, , 471-482.	0.5	2
159	Synthesis and characterization of novel ethylene glycol polyesters containing terephthalic and 5-adamantylisophthalic acids. Designed Monomers and Polymers, 2003, 6, 123-133.	0.7	1
160	Chemical Durability Studies of PFSA and Nonfluorinated PEM Materials. ACS Symposium Series, 2010, , 125-136.	0.5	1
161	Rapid screening test for flame retardation of wood, and its applicability to thermoplastic polymer systems. Journal of Applied Polymer Science, 2018, 135, 46602.	1.3	1
162	Nanocomposites of Liquid Crystalline Polyhedral Oligomeric Silsesquioxane Particles and Liquid Crystalline Polymers. Materials Research Society Symposia Proceedings, 2003, 788, 9101.	0.1	0

#	Article	IF	CITATIONS
163	Responsive Polymer/Clay Aerogel Composites. Materials Research Society Symposia Proceedings, 2004, 847, 502.	0.1	O
164	Optical Data Storage: Rollâ€toâ€Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage (Adv. Mater. 38/2012). Advanced Materials, 2012, 24, 5146-5146.	11.1	0
165	Unfrustration of a frustrated liquid crystalline polymer. Polymer, 2018, 158, 59-64.	1.8	O
166	The Many Faces of Silicon and SILICON. Silicon, 2019, 11, 2201-2201.	1.8	0
167	Gadolinium-Hydrogel-Lipid Hybrid Nanoparticles Provide `Off-On-Off' MRI Signals for Non-Invasive Thermometry. , 2009, , .		0