José LuÃ-s Corchero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319546/publications.pdf Version: 2024-02-01

ΙΟςÃΩ ΙΠÃς ΟΟΡΟΗΕΡΟ

#	Article	IF	CITATIONS
1	Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 2009, 8, 17.	4.0	349
2	Biomedical applications of distally controlled magnetic nanoparticles. Trends in Biotechnology, 2009, 27, 468-476.	9.3	257
3	Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial Cell Factories, 2015, 14, 57.	4.0	178
4	Bacterial inclusion bodies: making gold from waste. Trends in Biotechnology, 2012, 30, 65-70.	9.3	157
5	Bacterial Inclusion Bodies: Discovering Their Better Half. Trends in Biochemical Sciences, 2017, 42, 726-737.	7.5	134
6	Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnology Advances, 2013, 31, 140-153.	11.7	116
7	<i>In Vivo</i> Architectonic Stability of Fully <i>de Novo</i> Designed Protein-Only Nanoparticles. ACS Nano, 2014, 8, 4166-4176.	14.6	89
8	Plasmid maintenance inEscherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins. , 1998, 58, 625-632.		84
9	Surface Cell Growth Engineering Assisted by a Novel Bacterial Nanomaterial. Advanced Materials, 2009, 21, 4249-4253.	21.0	73
10	Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell Therapies. Advanced Materials, 2012, 24, 1742-1747.	21.0	67
11	Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomaterialia, 2013, 9, 6134-6142.	8.3	65
12	The position of the heterologous domain can influence the solubility and proteolysis of β-galactosidase fusion proteins in E. coli. Journal of Biotechnology, 1996, 48, 191-200.	3.8	63
13	Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiology Letters, 1998, 169, 9-15.	1.8	61
14	Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles. International Journal of Nanomedicine, 2012, 7, 4533.	6.7	61
15	Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microbial Cell Factories, 2012, 11, 76.	4.0	52
16	Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Critical Reviews in Biotechnology, 2015, 35, 209-221.	9.0	50
17	Comparison of Serologic Assays for Detection of Antibodies against Human Herpesvirus 8. Vaccine Journal, 2001, 8, 913-921.	2.6	49
18	Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules, 2022, 12, 784.	4.0	48

#	Article	IF	CITATIONS
19	Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine. Microbial Cell Factories, 2011, 10, 101.	4.0	47
20	Functional protein aggregates: just the tip of the iceberg. Nanomedicine, 2015, 10, 2881-2891.	3.3	42
21	Multifunctional Nanovesicle-Bioactive Conjugates Prepared by a One-Step Scalable Method Using CO ₂ -Expanded Solvents. Nano Letters, 2013, 13, 3766-3774.	9.1	40
22	αâ€Galactosidaseâ€A Loadedâ€Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration. Advanced Healthcare Materials, 2016, 5, 829-840.	7.6	40
23	Post-production protein stability: trouble beyond the cell factory. Microbial Cell Factories, 2011, 10, 60.	4.0	39
24	Modular Protein Engineering in Emerging Cancer Therapies. Current Pharmaceutical Design, 2009, 15, 893-916.	1.9	38
25	Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microbial Cell Factories, 2011, 10, 92.	4.0	37
26	Limitedin VivoProteolysis of Aggregated Proteins. Biochemical and Biophysical Research Communications, 1997, 237, 325-330.	2.1	36
27	Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. BBA - Proteins and Proteomics, 1999, 1434, 170-176.	2.1	36
28	Recombinant protein materials for bioengineering and nanomedicine. Nanomedicine, 2014, 9, 2817-2828.	3.3	33
29	The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response inEscherichia coli. , 1998, 60, 551-559.		31
30	Design and characterization of Ni2+ and Co2+ decorated Porous Magnetic Silica spheres synthesized by hydrothermal-assisted modified-Stöber method for His-tagged proteins separation. Journal of Colloid and Interface Science, 2012, 365, 156-162.	9.4	31
31	General Introduction: Recombinant Protein Production and Purification of Insoluble Proteins. Methods in Molecular Biology, 2015, 1258, 1-24.	0.9	29
32	Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Scientific Reports, 2016, 6, 35765.	3.3	28
33	Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 535-541.	3.3	27
34	A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine, 2013, 8, 1587-1599.	3.3	26
35	Control of Escherichia coli growth rate through cell density. Microbiological Research, 2002, 157, 257-265.	5.3	25
36	Tools to cope with difficult-to-express proteins. Applied Microbiology and Biotechnology, 2016, 100, 4347-4355.	3.6	25

#	Article	IF	CITATIONS
37	Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Applied Microbiology and Biotechnology, 2015, 99, 5863-5874.	3.6	22
38	Latest Advances in the Development of Eukaryotic Vaults as Targeted Drug Delivery Systems. Pharmaceutics, 2019, 11, 300.	4.5	22
39	Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS Applied Materials & Interfaces, 2016, 8, 25741-25752.	8.0	20
40	Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders. Journal of Extracellular Vesicles, 2021, 10, e12058.	12.2	19
41	Cell lysis in Escherichia coli cultures stimulates growth and biosynthesis of recombinant proteins in surviving cells. Microbiological Research, 2001, 156, 13-18.	5.3	18
42	Integrated approach to produce a recombinant, hisâ€ŧagged human αâ€galactosidase a in mammalian cells. Biotechnology Progress, 2011, 27, 1206-1217.	2.6	17
43	Ammonium-Mediated Reduction of Plasmid Copy Number and Recombinant Gene Expression in Escherichia coli. Biotechnology Progress, 1994, 10, 648-651.	2.6	16
44	A novel bio-functional material based on mammalian cell aggresomes. Applied Microbiology and Biotechnology, 2015, 99, 7079-7088.	3.6	16
45	Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment. ACS Applied Materials & Interfaces, 2021, 13, 7825-7838.	8.0	16
46	Comparison of serologic responses between Kaposi's sarcoma-positive and -negative men who were seropositive for both human herpesvirus 8 and human immunodeficiency virus. Journal of Medical Virology, 2004, 74, 202-206.	5.0	15
47	Reversible activation of a cryptic cleavage site within E. coli β-galactosidase in β-galactosidase fusion proteins. BBA - Proteins and Proteomics, 1997, 1343, 221-226.	2.1	13
48	Enzymatic characterization of highly stable human alpha-galactosidase A displayed on magnetic particles. Biochemical Engineering Journal, 2012, 67, 20-27.	3.6	13
49	Nanotechnologyâ€based approaches for treating lysosomal storage disorders, a focus on Fabry disease. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1684.	6.1	12
50	Engineered Biological Entities for Drug Delivery and Gene Therapy. Progress in Molecular Biology and Translational Science, 2011, 104, 247-298.	1.7	10
51	Human α-Galactosidase A Mutants: Priceless Tools to Develop Novel Therapies for Fabry Disease. International Journal of Molecular Sciences, 2021, 22, 6518.	4.1	9
52	Title is missing!. Biotechnology Letters, 1997, 19, 225-228.	2.2	8
53	Improving the binding capacity of Ni2+ decorated porous magnetic silica spheres for histidine-rich protein separation. Colloids and Surfaces B: Biointerfaces, 2013, 101, 370-375.	5.0	7
54	Eukaryotic aggresomes: from a model of conformational diseases to an emerging type of immobilized biocatalyzers. Applied Microbiology and Biotechnology, 2016, 100, 559-569.	3.6	7

JOSé LuÃs Corchero

#	Article	IF	CITATIONS
55	Distinct chaperone affinity to folding variants of homologous recombinant proteins. Biotechnology Letters, 1999, 21, 531-536.	2.2	6
56	All-in-one biofabrication and loading of recombinant vaults in human cells. Biofabrication, 2022, 14, 025018.	7.1	6
57	The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response inEscherichia coli. , 1999, 64, 127-127.		3
58	Targeted nanoliposomes for the treatment of Fabry disease. Molecular Genetics and Metabolism, 2019, 126, S17.	1.1	3
59	Production of thermally induced recombinant proteins relative to cell biomass is influenced by cell density in Escherichia coli batch cultures. Biotechnology Letters, 1994, 16, 777-782.	2.2	2
60	Recombinant Protein Production and Purification of Insoluble Proteins. Methods in Molecular Biology, 2022, 2406, 1-31.	0.9	2
61	Mitomycin C stimulates thermally induced recombinant gene expression in Escherichia coli MC strains. Applied Microbiology and Biotechnology, 1995, 42, 890-894.	3.6	Ο
62	Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112123.	5.0	0
63	Eukaryotic : Protocols and Tips for Their Production, Purification, and Handling. Methods in Molecular Biology, 2022, 2406, 417-435.	0.9	0