## Milan Balaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319175/publications.pdf Version: 2024-02-01



ΜΠΑΝ ΒΑΙΑΖ

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Imaging intracellular viscosity of a single cell during photoinduced cell death. Nature Chemistry, 2009, 1, 69-73.                                                                                                                | 13.6 | 544       |
| 2  | Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nature<br>Photonics, 2008, 2, 420-424.                                                                                                          | 31.4 | 355       |
| 3  | Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots. ACS<br>Nano, 2013, 7, 11094-11102.                                                                                                  | 14.6 | 245       |
| 4  | Photophysical properties and intracellular imaging of water-soluble porphyrin dimers for<br>two-photon excited photodynamic therapy. Organic and Biomolecular Chemistry, 2009, 7, 889.                                            | 2.8  | 130       |
| 5  | Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Organic and Biomolecular Chemistry, 2009, 7, 874.                                                     | 2.8  | 125       |
| 6  | Racemic Single-Walled Carbon Nanotubes Exhibit Circular Dichroism When Wrapped with DNA.<br>Journal of the American Chemical Society, 2006, 128, 9004-9005.                                                                       | 13.7 | 124       |
| 7  | Interactions of a Tetraanionic Porphyrin with DNA: from a Z-DNA Sensor to a Versatile<br>Supramolecular Device. Journal of the American Chemical Society, 2009, 131, 2046-2047.                                                   | 13.7 | 120       |
| 8  | A Cationic Zinc Porphyrin as a Chiroptical Probe for Z-DNA. Angewandte Chemie - International<br>Edition, 2005, 44, 4006-4009.                                                                                                    | 13.8 | 115       |
| 9  | Unravelling the effect of temperature on viscosity-sensitive fluorescent molecular rotors. Chemical Science, 2015, 6, 5773-5778.                                                                                                  | 7.4  | 100       |
| 10 | Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand. ACS Nano, 2016, 10, 3809-3815.                                                                                       | 14.6 | 94        |
| 11 | Synthesis and Circular Dichroism of Tetraarylporphyrinâ^Oligonucleotide Conjugates. Journal of the<br>American Chemical Society, 2005, 127, 4172-4173.                                                                            | 13.7 | 91        |
| 12 | One- and two-photon activated phototoxicity of conjugated porphyrin dimers with high two-photon absorption cross sections. Organic and Biomolecular Chemistry, 2009, 7, 897.                                                      | 2.8  | 86        |
| 13 | Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with d- or l-cysteine. Chemical Communications, 2013, 49, 1844.                                                      | 4.1  | 83        |
| 14 | Role of Environmental Factors on the Structure and Spectroscopic Response of 5′â€DNA–Porphyrin<br>Conjugates Caused by Changes in the Porphyrin–Porphyrin Interactions. Chemistry - A European<br>Journal, 2009, 15, 11853-11866. | 3.3  | 73        |
| 15 | Intramolecular Rotation in a Porphyrin Dimer Controls Singlet Oxygen Production. Journal of the<br>American Chemical Society, 2009, 131, 7948-7949.                                                                               | 13.7 | 69        |
| 16 | Porphyrin substituted phosphoramidites: new building blocks for porphyrin–oligonucleotide<br>syntheses. Bioorganic and Medicinal Chemistry, 2005, 13, 2413-2421.                                                                  | 3.0  | 57        |
| 17 | CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural<br>Requirements for Ligand-Induced Chirality. ACS Nano, 2017, 11, 9846-9853.                                                     | 14.6 | 55        |
| 18 | Porphyrins as spectroscopic sensors for conformational studies of DNA. Pure and Applied Chemistry, 2007, 79, 801-809.                                                                                                             | 1.9  | 51        |

Milan Balaz

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 5â€~-Porphyrinâ^'Oligonucleotide Conjugates:  Neutral Porphyrinâ^'DNA Interactionsâ€. Organic Letters,<br>2005, 7, 5613-5616.                                                                  | 4.6  | 45        |
| 20 | Porphyrins conjugated to DNA as CD reporters of the salt-induced B to Z-DNA transition,. Organic and Biomolecular Chemistry, 2006, 4, 1865.                                                    | 2.8  | 44        |
| 21 | Determination of the triplet state energies of a series of conjugated porphyrin oligomers.<br>Photochemical and Photobiological Sciences, 2007, 6, 675.                                        | 2.9  | 44        |
| 22 | Dual mode quantitative imaging of microscopic viscosity using a conjugated porphyrin dimer. Physical Chemistry Chemical Physics, 2015, 17, 7548-7554.                                          | 2.8  | 43        |
| 23 | Synthesis and characterization of water-soluble free-base, zinc and copper<br>porphyrin–oligonucleotide conjugates. Bioorganic and Medicinal Chemistry, 2008, 16, 6544-6551.                   | 3.0  | 39        |
| 24 | Formation and helicity control of ssDNA templated porphyrin nanoassemblies. Chemical Communications, 2013, 49, 1020-1022.                                                                      | 4.1  | 36        |
| 25 | Highly Sensitive and Selective Spectroscopic Detection of Mercury(II) in Water by Using<br>Pyridylporphyrin–DNA Conjugates. Chemistry - A European Journal, 2013, 19, 2515-2522.               | 3.3  | 34        |
| 26 | Tuning the Sensitivity of Fluorescent Porphyrin Dimers to Viscosity and Temperature. Chemistry - A<br>European Journal, 2017, 23, 11001-11010.                                                 | 3.3  | 34        |
| 27 | Supramolecular ssDNA Templated Porphyrin and Metalloporphyrin Nanoassemblies with Tunable<br>Helicity. Chemistry - A European Journal, 2014, 20, 1878-1892.                                    | 3.3  | 33        |
| 28 | Tetraarylporphyrin as a Selective Molecular Cap for Non-Watson–Crick Guanine–Adenine Base-Pair<br>Sequences. Angewandte Chemie - International Edition, 2006, 45, 3530-3533.                   | 13.8 | 31        |
| 29 | Chiroptical properties of anionic and cationic porphyrins and metalloporphyrins in complex with left-handed Z-DNA and right-handed B-DNA. Journal of Inorganic Biochemistry, 2013, 127, 1-6.   | 3.5  | 31        |
| 30 | Porphyrin–DNA conjugates: porphyrin induced adenine–guanine homoduplex stabilization and<br>interduplex assemblies. Organic and Biomolecular Chemistry, 2012, 10, 5533.                        | 2.8  | 28        |
| 31 | Chiroptical Detection of Condensed Nickel(II)-Z-DNA in the Presence of the B-DNA Via Porphyrin<br>Exciton Coupled Circular Dichroism. Journal of Physical Chemistry B, 2011, 115, 10182-10188. | 2.6  | 26        |
| 32 | Zâ€DNA Recognition in Bâ€Zâ€B Sequences by a Cationic Zinc Porphyrin. Chemistry - an Asian Journal, 2011, 6,<br>3104-3109.                                                                     | 3.3  | 26        |
| 33 | Chiral multichromophoric supramolecular nanostructures assembled by single stranded DNA and RNA templates. Coordination Chemistry Reviews, 2017, 349, 66-83.                                   | 18.8 | 26        |
| 34 | A new chiral oxathiane: synthesis, resolution and absolute configuration determination by vibrational circular dichroism. Tetrahedron: Asymmetry, 2001, 12, 2605-2611.                         | 1.8  | 22        |
| 35 | Effect of ionic liquids on the conformation of a porphyrin-based viscometer. RSC Advances, 2013, 3, 18300.                                                                                     | 3.6  | 22        |
| 36 | Mechanothermally induced conformational switch of a porphyrin dimer in a polymer film. Chemical<br>Communications, 2016, 52, 9510-9513.                                                        | 4.1  | 20        |

Milan Balaz

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Mild Stereo- and Enantiospecific Conversion of 2,3-Diaryl-Substituted Oxiranes into<br>2,2-Dimethyl-1,3-Dioxolanes by an Acetone/Amberlyst 15 System. European Journal of Organic Chemistry,<br>2006, 2006, 3007-3011. | 2.4 | 19        |
| 38 | Recognition of left-handed Z-DNA of short unmodified oligonucleotides under physiological ionic strength conditions. Biochemical and Biophysical Research Communications, 2010, 397, 329-332.                            | 2.1 | 15        |
| 39 | Sequence and linker dependent chiral dimerization of DNA–porphyrin conjugates. Tetrahedron, 2012,<br>68, 2093-2099.                                                                                                      | 1.9 | 15        |
| 40 | New 1,3-Oxathianes Derived from Myrtenal:Â Synthesis and Reactivity. Journal of Organic Chemistry, 2003, 68, 6619-6626.                                                                                                  | 3.2 | 13        |
| 41 | Chiroptical properties, binding affinity, and photostability of a conjugated zinc porphyrin dimer<br>complexed with left-handed Z-DNA and right-handed B-DNA. Dalton Transactions, 2014, 43, 563-567.                    | 3.3 | 11        |
| 42 | Functional Nanoassemblies with Mirror-Image Chiroptical Properties Templated by a Single<br>Homochiral DNA Strand. Chemistry of Materials, 2020, 32, 2272-2281.                                                          | 6.7 | 10        |
| 43 | Diastereoreactivity of a Chiral Oxathiane Derived from 5-Hydroxy-1-tetralone. European Journal of<br>Organic Chemistry, 2003, 2003, 337-345.                                                                             | 2.4 | 9         |
| 44 | Sulfonated Ni(II)porphyrin improves the detection of Z-DNA in condensed and non-condensed BZB DNA sequences. Journal of Inorganic Biochemistry, 2012, 110, 18-20.                                                        | 3.5 | 9         |
| 45 | 3,3′-Diethylthiatricarbocyanine Iodide: A Highly Sensitive Chiroptical Reporter of DNA Helicity and Sequence. International Journal of Molecular Sciences, 2011, 12, 8052-8062.                                          | 4.1 | 8         |
| 46 | Conformational preference of a porphyrin rotor in confined environments. RSC Advances, 2014, 4, 705-708.                                                                                                                 | 3.6 | 8         |
| 47 | Transition metal induced switch of fluorescence and absorption response of a<br>Zn( <scp>ii</scp> )porphyrin–DNA conjugate to cysteine derivatives. RSC Advances, 2015, 5, 15916-15922.                                  | 3.6 | 6         |
| 48 | The effect of molecular isomerism on the induced circular dichroism of cadmium sulfide quantum dots. Journal of Materials Chemistry C, 2021, 9, 17483-17495.                                                             | 5.5 | 5         |
| 49 | Apple juice and red wine induced mirrorâ€image circular dichroism in quantum dots. Chirality, 2021, , .                                                                                                                  | 2.6 | 3         |
| 50 | Effect of macromolecular crowding on the conformational behaviour of a porphyrin rotor. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 369, 115-118.                                                     | 3.9 | 2         |
| 51 | Templated Porphyrin Assemblies Using Bio-Inspired Scaffolds — Covalent and Non-Covalent Approaches. , 2016, , 31-128.                                                                                                    |     | 0         |
| 52 | Frontispiece: Tuning the Sensitivity of Fluorescent Porphyrin Dimers to Viscosity and Temperature.<br>Chemistry - A European Journal, 2017, 23, .                                                                        | 3.3 | 0         |
| 53 | Structure and Electronic Circular Dichroism of Chiral Porphyrins and Chiral Porphyrin Dimers.<br>Handbook of Porphyrin Science, 2019, , 205-284.                                                                         | 0.8 | 0         |