Maria Vila Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structured light using carbon nanostructures driven by Kerr nonlinearities and a magnetic field. Physical Chemistry Chemical Physics, 2022, 24, 1081-1090.	1.3	9
2	Macroscopic yarns of FeCl3-intercalated collapsed carbon nanotubes with high doping and stability. Carbon, 2021, 173, 311-321.	5.4	14
3	Low-energy consumption, free-form capacitive deionization through nanostructured networks. Carbon, 2021, 176, 390-399.	5.4	15
4	Composite Fabrics of Conformal MoS ₂ Grown on CNT Fibers: Tough Battery Anodes without Metals or Binders. ACS Applied Energy Materials, 2021, 4, 5668-5676.	2.5	12
5	Identification of Collapsed Carbon Nanotubes in High-Strength Fibers Spun from Compositionally Polydisperse Aerogels. ACS Applied Nano Materials, 2021, 4, 6947-6955.	2.4	6
6	Improving the CO and CH4 Gas Sensor Response at Room Temperature of α-Fe2O3(0001) Epitaxial Thin Films Grown on SrTiO3(111) Incorporating Au(111) Islands. Coatings, 2021, 11, 848.	1.2	5
7	Simultaneous improvements in conversion and properties of molecularly controlled CNT fibres. Carbon, 2021, 179, 417-424.	5.4	18
8	Ferromagnetic epitaxial Cr2O3 thin films grown on oxide substrates by Pulsed Laser Deposition. Applied Surface Science, 2020, 534, 147638.	3.1	4
9	Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels. Nanoscale, 2020, 12, 16980-16986.	2.8	21
10	Double Beneficial Role of Fluorinated Fullerene Dopants on Organic Thin-Film Transistors: Structural Stability and Improved Performance. ACS Applied Materials & Interfaces, 2020, 12, 28416-28425.	4.0	13
11	Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Scientific Reports, 2019, 9, 9239.	1.6	28
12	Transparent Sol-Gel Oxyfluoride Glass-Ceramics with High Crystalline Fraction and Study of RE Incorporation. Nanomaterials, 2019, 9, 530.	1.9	21
13	The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy. Journal of Applied Physics, 2018, 123, .	1.1	2
14	In situ synchrotron x-ray diffraction study of Zn/Bi2O3 electrodes prior to and during discharge of Zn-air batteries: Influence on ZnO deposition. Electrochimica Acta, 2018, 281, 133-141.	2.6	18
15	Surface Chemistry Analysis of Carbon Nanotube Fibers by Xâ€Ray Photoelectron Spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800187.	0.8	15
16	Correlation of Electrical Response and Structural Phase Transitions in Bi ₂ O ₃ Nanowires. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800186.	0.8	3
17	Effects of thermal annealing on the structural and electronic properties of rare earth-implanted MoO ₃ nanoplates. CrystEngComm, 2017, 19, 2339-2348.	1.3	6
18	Assessing Oxygen Vacancies in Bismuth Oxide through EELS Measurements and DFT Simulations. Journal of Physical Chemistry C, 2017, 121, 24809-24815.	1.5	23

MARIA VILA SANTOS

#	Article	IF	CITATIONS
19	Thermal growth, structural and optical characterization of hierarchical Bi2O3 - MoO3 nanostructures. Journal of Alloys and Compounds, 2017, 728, 827-835.	2.8	4
20	Controlled orientation of molecular-beam-epitaxial BaTiO ₃ on Si(001) using thickness engineering of BaTiO ₃ and SrTiO ₃ buffer layers. Applied Physics Express, 2017, 10, 065501.	1.1	13
21	Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy. Physical Review Materials, 2017, 1, .	0.9	10
22	Growth, structure, luminescence and mechanical resonance of Bi ₂ O ₃ nano- and microwires. CrystEngComm, 2015, 17, 132-139.	1.3	12
23	Intense luminescence emission from rare-earth-doped MoO3nanoplates and lamellar crystals for optoelectronic applications. Journal Physics D: Applied Physics, 2014, 47, 355105.	1.3	28
24	Structural and luminescence properties of Eu and Er implanted Bi2O3 nanowires for optoelectronic applications. Journal of Materials Chemistry C, 2013, 1, 7920.	2.7	38
25	α-Bi2O3 microcrystals and microrods: Thermal synthesis, structural and luminescence properties. Journal of Alloys and Compounds, 2013, 548, 188-193.	2.8	50
26	Laser irradiation-induced $\hat{l}\pm$ to \hat{l}' phase transformation in Bi2O3 ceramics and nanowires. Applied Physics Letters, 2012, 101, 071905.	1.5	40
27	Luminescence and Raman study of $\hat{I}\pm$ -Bi2O3 ceramics. Materials Chemistry and Physics, 2012, 133, 559-564.	2.0	64
28	Exchange bias in single-crystalline CuO nanowires. Applied Physics Letters, 2010, 96, .	1.5	52
29	Optical and magnetic properties of CuO nanowires grown by thermal oxidation. Journal Physics D: Applied Physics, 2010, 43, 135403.	1.3	53