
Kathy R Magnusson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help?. Free Radical Biology and Medicine, 2022, 178, 330-346.	2.9	17
2	Nitrate and Nitrite Treatment Affect Zebrafish Behavior and Brain Metabolomic Profile. Current Developments in Nutrition, 2020, 4, nzaa057_006.	0.3	0
3	Title is missing!. , 2020, 15, e0240070.		0
4	Title is missing!. , 2020, 15, e0240070.		0
5	Title is missing!. , 2020, 15, e0240070.		0
6	Title is missing!. , 2020, 15, e0240070.		0
7	Age-related differences in brain activations during spatial memory formation in a well-learned virtual Morris water maze (vMWM) task. NeuroImage, 2019, 202, 116069.	4.2	10
8	Higher Levels of Protein Palmitoylation in the Frontal Cortex across Aging Were Associated with Reference Memory and Executive Function Declines. ENeuro, 2019, 6, ENEURO.0310-18.2019.	1.9	18
9	Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience, 2017, 344, 276-292.	2.3	18
10	Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radical Biology and Medicine, 2017, 112, 308-317.	2.9	45
11	The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning Behavioral Neuroscience, 2017, 131, 470-482.	1.2	35
12	Higher levels of phosphorylated Y1472 on GluN2B subunits in the frontal cortex of aged mice are associated with good spatial reference memory, but not cognitive flexibility. Age, 2016, 38, 50.	3.0	14
13	Xanthohumol improved cognitive flexibility in young mice. Behavioural Brain Research, 2014, 275, 1-10.	2.2	44
14	An Increase in the Association of GluN2B Containing NMDA Receptors with Membrane Scaffolding Proteins Was Related to Memory Declines during Aging. Journal of Neuroscience, 2013, 33, 12300-12305.	3.6	38
15	Aging of the NMDA receptor: from a mouse's point of view. Future Neurology, 2012, 7, 627-637.	0.5	36
16	Reducing expression of GluN10XX subunit splice variants of the NMDA receptor interferes with spatial reference memory. Behavioural Brain Research, 2012, 230, 317-324.	2.2	19
17	Changes in expression of splice cassettes of NMDA receptor GluN1 subunits within the frontal lobe and memory in mice during aging. Behavioural Brain Research, 2011, 222, 122-133.	2.2	24
18	Aging is associated with altered dendritic cells subset distribution and impaired proinflammatory cytokine production. Experimental Gerontology, 2010, 45, 163-169.	2.8	65

KATHY R MAGNUSSON

#	Article	IF	CITATIONS
19	Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Frontiers in Aging Neuroscience, 2010, 2, 11.	3.4	102
20	Relationship between mRNA expression of splice forms of the ζ1 subunit of the N-methyl-d-aspartate receptor and spatial memory in aged mice. Brain Research, 2008, 1207, 142-154.	2.2	18
21	Age-related declines in a two-day reference memory task are associated with changes in NMDA receptor subunits in mice. BMC Neuroscience, 2007, 8, 43.	1.9	50
22	Can Selective Ligands for Glutamate Binding Proteins be Rationally Designed?. Current Topics in Medicinal Chemistry, 2006, 6, 823-847.	2.1	14
23	The effects of aging on different C-terminal splice forms of the ζ1(NR1) subunit of the N-methyl-d-aspartate receptor in mice. Molecular Brain Research, 2005, 135, 141-149.	2.3	23
24	Catalytic Asymmetric Synthesis of Glutamate Analogues. Organic Letters, 2004, 6, 1285-1288.	4.6	13
25	Acute dissociation for analyses of NMDA receptor function in cortical neurons during aging. Journal of Neuroscience Methods, 2003, 129, 11-17.	2.5	16
26	Age-related deficits in mice performing working memory tasks in a water maze Behavioral Neuroscience, 2003, 117, 485-495.	1.2	61
27	Electrophysiological analysis of NMDA receptor subunit changes in the aging mouse cortex. Mechanisms of Ageing and Development, 2000, 115, 39-59.	4.6	27
28	Declines in mRNA Expression of Different Subunits May Account for Differential Effects of Aging on Agonist and Antagonist Binding to the NMDA Receptor. Journal of Neuroscience, 2000, 20, 1666-1674.	3.6	115
29	Changes in Anesthetic Sensitivity and Glutamate Receptors in the Aging Canine Brain. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2000, 55, B448-B454.	3.6	39
30	Taurine 3: Cellular and Regulatory Mechanisms. Stephen Schaffer , John B. Lombardini , Ryan J. Huxtable. Quarterly Review of Biology, 1999, 74, 467-468.	0.1	0
31	Aging of glutamate receptors: correlations between binding and spatial memory performance in mice. Mechanisms of Ageing and Development, 1998, 104, 227-248.	4.6	109
32	The aging of the NMDA receptor complex. Frontiers in Bioscience - Landmark, 1998, 3, e70-80.	3.0	83
33	Influence of dietary restriction on ionotropic glutamate receptors during aging in C57B1 mice. Mechanisms of Ageing and Development, 1997, 95, 187-202.	4.6	41
34	Glycine Enhances Binding to the NMDA Receptor Complex in Aged Mice, But Does Not Correct the Aging Change. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1996, 51A, B141-B147.	3.6	9
35	Differential effects of aging on binding sites of the activated NMDA receptor complex in mice. Mechanisms of Ageing and Development, 1995, 84, 227-243.	4.6	43
36	Effects of aging on NMDA and MK801 binding sites in mice. Brain Research, 1993, 604, 334-337.	2.2	57

#	Article	IF	CITATIONS
37	Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiology of Aging, 1993, 14, 197-206.	3.1	139
38	In vitro autoradiography of hippocampal excitatory amino acid binding in aged Fischer 344 rats: Relationship to performance on the Morris water maze Behavioral Neuroscience, 1992, 106, 324-335.	1.2	77