Lynn M Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319099/publications.pdf Version: 2024-02-01

		9784	22161
255	17,519	73	113
papers	citations	h-index	g-index
321	321	321	10604
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A large organic aerosol source in the free troposphere missing from current models. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	576
2	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 2006, 6, 2017-2038.	4.9	447
3	Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7550-7555.	7.1	439
4	Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18318-18323.	7.1	409
5	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	4.9	363
6	ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution. Bulletin of the American Meteorological Society, 2004, 85, 367-380.	3.3	330
7	Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6652-6657.	7.1	322
8	The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations. Atmospheric Chemistry and Physics, 2011, 11, 627-654.	4.9	272
9	Organic Aerosol Growth Mechanisms and Their Climate-Forcing Implications. Science, 2004, 306, 1921-1924.	12.6	269
10	Evidence for NO <i> _x </i> Control over Nighttime SOA Formation. Science, 2012, 337, 1210-1212.	12.6	266
11	The Effects of Low Molecular Weight Dicarboxylic Acids on Cloud Formation. Journal of Physical Chemistry A, 2001, 105, 11240-11248.	2.5	258
12	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmospheric Chemistry and Physics, 2011, 11, 12673-12696.	4.9	240
13	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	3.3	231
14	Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nature Geoscience, 2014, 7, 228-232.	12.9	223
15	Aerosol Organic-Mass-to-Organic-Carbon Ratio Measurements. Environmental Science & Technology, 2003, 37, 2982-2987.	10.0	210
16	Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3516-3521.	7.1	195
17	FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean. Atmospheric Environment, 2002, 36, 5185-5196.	4.1	190
18	Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8827-8845.	4.9	190

#	Article	IF	CITATIONS
19	Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALSâ€REx 2008. Journal of Geophysical Research, 2010, 115, .	3.3	184
20	Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts. Environmental Science & Technology, 2017, 51, 6542-6552.	10.0	184
21	Emissions from Ships with respect to Their Effects on Clouds. Journals of the Atmospheric Sciences, 2000, 57, 2570-2590.	1.7	166
22	Source signatures of carbon monoxide and organic functional groups in Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) submicron aerosol types. Journal of Geophysical Research, 2003, 108, .	3.3	159
23	Prompt deliquescence and efflorescence of aerosol nanoparticles. Atmospheric Chemistry and Physics, 2006, 6, 4633-4642.	4.9	158
24	Mapping organic coatings on atmospheric particles. Geophysical Research Letters, 2002, 29, 26-1-26-4.	4.0	157
25	The relationship between DMS flux and CCN concentration in remote marine regions. Journal of Geophysical Research, 1994, 99, 16945.	3.3	155
26	Hydrolysis of Organonitrate Functional Groups in Aerosol Particles. Aerosol Science and Technology, 2012, 46, 1359-1369.	3.1	153
27	Aerosol production and growth in the marine boundary layer. Journal of Geophysical Research, 1994, 99, 20989.	3.3	152
28	Radial Differential Mobility Analyzer. Aerosol Science and Technology, 1995, 23, 357-372.	3.1	150
29	Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters. Aerosol Science and Technology, 1997, 27, 224-242.	3.1	145
30	Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. Journal of Geophysical Research, 2005, 110, .	3.3	144
31	Nanosize Effect on the Deliquescence and the Efflorescence of Sodium Chloride Particles. Aerosol Science and Technology, 2006, 40, 97-106.	3.1	142
32	Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmospheric Environment, 2010, 44, 1970-1979.	4.1	137
33	Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 2527-2560.	4.9	134
34	Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley. Atmospheric Chemistry and Physics, 2012, 12, 3147-3163.	4.9	129
35	Polysaccharides, Proteins, and Phytoplankton Fragments: Four Chemically Distinct Types of Marine Primary Organic Aerosol Classified by Single Particle Spectromicroscopy. Advances in Meteorology, 2010, 2010, 1-14.	1.6	128
36	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & Technology, 2012, 46, 9437-9446.	10.0	128

#	Article	IF	CITATIONS
37	Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V <i>Ronald Brown</i> during TEXAQS/GoMACCS 2006. Journal of Geophysical Research, 2009, 114, .	3.3	126
38	A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria. Atmospheric Chemistry and Physics, 2014, 14, 13601-13629.	4.9	124
39	Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,743-11,759.	3.3	121
40	South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5237-5262.	4.9	119
41	Phase Transitions of Single Salt Particles Studied Using a Transmission Electron Microscope with an Environmental Cell. Aerosol Science and Technology, 2005, 39, 849-856.	3.1	118
42	January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications, 2017, 8, 15799.	12.8	116
43	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Technology, 2013, 47, 11403-11413.	10.0	113
44	Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophysical Research Letters, 2004, 31, .	4.0	112
45	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	2.5	111
46	Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmospheric Chemistry and Physics, 2009, 9, 5417-5432.	4.9	109
47	Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & Technology, 2012, 46, 13093-13102.	10.0	109
48	Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 2017, 17, 11107-11133.	4.9	109
49	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	4.9	108
50	Sources and composition of submicron organic mass in marine aerosol particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,977.	3.3	106
51	Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Communications, 2017, 8, 15333.	12.8	105
52	Determination of Differential Mobility Analyzer Transfer Functions Using Identical Instruments in Series. Aerosol Science and Technology, 1997, 27, 215-223.	3.1	104
53	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103
54	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	3.3	103

#	Article	IF	CITATIONS
55	Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 2021, 102, E894-E928.	3.3	103
56	Thermodynamic equilibrium of organic-electrolyte mixtures in aerosol particles. AICHE Journal, 2002, 48, 1331-1348.	3.6	101
57	Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophysical Research Letters, 2006, 33, .	4.0	100
58	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
59	Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer. Journal of Geophysical Research, 1998, 103, 16411-16432.	3.3	99
60	Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating State for Two California, USA, Cities in Winter and Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1550-1577.	3.3	99
61	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
62	Fog scavenging of organic and inorganic aerosol in the Po Valley. Atmospheric Chemistry and Physics, 2014, 14, 6967-6981.	4.9	98
63	Predicted hygroscopic growth of sea salt aerosol. Journal of Geophysical Research, 2001, 106, 28259-28274.	3.3	97
64	Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions. Journal of Supercritical Fluids, 2002, 23, 65-80.	3.2	96
65	Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes. Atmospheric Measurement Techniques, 2014, 7, 3667-3683.	3.1	95
66	Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. Journal of Geophysical Research, 2004, 109, .	3.3	94
67	Effect of soluble surfactant on bubble persistence and bubbleâ€produced aerosol particles. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1388-1400.	3.3	94
68	Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5. Journal of Geophysical Research, 2012, 117, .	3.3	89
69	Eastern Pacific Emitted Aerosol Cloud Experiment. Bulletin of the American Meteorological Society, 2013, 94, 709-729.	3.3	89
70	Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. Journal of Geophysical Research, 2006, 111, .	3.3	88
71	Deliquescence of small particles. Journal of Chemical Physics, 2002, 116, 311.	3.0	87
72	Water Uptake by NaCl Particles Prior to Deliquescence and the Phase Rule. Aerosol Science and Technology, 2008, 42, 281-294.	3.1	84

#	Article	IF	CITATIONS
73	Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site. Atmospheric Chemistry and Physics, 2011, 11, 6367-6386.	4.9	84
74	Primary marine aerosol loud interactions off the coast of California. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4282-4303.	3.3	83
75	Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign. Atmospheric Chemistry and Physics, 2009, 9, 6849-6863.	4.9	81
76	Quantification of Carboxylic and Carbonyl Functional Groups in Organic Aerosol Infrared Absorbance Spectra. Aerosol Science and Technology, 2013, 47, 310-325.	3.1	81
77	Classification of multiple types of organic carbon composition in atmospheric particles by scanning transmission X-ray microscopy analysis. Atmospheric Environment, 2007, 41, 9435-9451.	4.1	78
78	The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm Marine Stratocumulus Clouds: A Test of MAST Hypotheses 1i and 1ii. Journals of the Atmospheric Sciences, 2000, 57, 2554-2569.	1.7	77
79	Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations. Elementa, 2015, 3, .	3.2	77
80	Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy. Journal of Atmospheric Chemistry, 2007, 56, 259-273.	3.2	76
81	Ship impacts on the marine atmosphere: insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmospheric Chemistry and Physics, 2012, 12, 8439-8458.	4.9	75
82	Asymmetric Instrument Response Resulting from Mixing Effects in Accelerated DMA-CPC Measurements. Aerosol Science and Technology, 1995, 23, 491-509.	3.1	74
83	Organic aerosol characterization by complementary measurements of chemical bonds and molecular fragments. Atmospheric Environment, 2009, 43, 6100-6105.	4.1	73
84	Organic and Elemental Carbon Measurements during ACE-Asia Suggest a Longer Atmospheric Lifetime for Elemental Carbon. Environmental Science & Technology, 2003, 37, 3055-3061.	10.0	72
85	Hygroscopic behavior of NaCl-bearing natural aerosol particles using environmental transmission electron microscopy. Journal of Geophysical Research, 2007, 112, .	3.3	72
86	Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield. Journal of Geophysical Research, 2012, 117, .	3.3	72
87	Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires. Atmospheric Environment, 2010, 44, 4142-4154.	4.1	71
88	Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter. Geophysical Research Letters, 2010, 37, .	4.0	70
89	Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan. Ambio, 2012, 41, 350-369.	5.5	69
90	Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmospheric Measurement Techniques, 2012, 5, 1259-1269.	3.1	68

#	Article	IF	CITATIONS
91	Organic and Inorganic Aerosol Below-Cloud Scavenging by Suburban New Jersey Precipitation. Environmental Science & Technology, 2005, 39, 4793-4800.	10.0	67
92	Direct N ₂ O ₅ reactivity measurements at a polluted coastal site. Atmospheric Chemistry and Physics, 2012, 12, 2959-2968.	4.9	64
93	Particle Charging and Transmission Efficiencies of Aerosol Charge Neutralizes. Aerosol Science and Technology, 1997, 27, 206-214.	3.1	62
94	Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC. Atmospheric Chemistry and Physics, 2009, 9, 3523-3546.	4.9	62
95	Temperature response of the submicron organic aerosol from temperate forests. Atmospheric Environment, 2011, 45, 6696-6704.	4.1	62
96	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.	4.9	62
97	Coatings and clusters of carboxylic acids in carbon ontaining atmospheric particles from spectromicroscopy and their implications for cloudâ€nucleating and optical properties. Journal of Geophysical Research, 2010, 115, .	3.3	61
98	Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. Atmospheric Environment, 2013, 68, 265-272.	4.1	61
99	Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups. Atmospheric Chemistry and Physics, 2011, 11, 8321-8341.	4.9	58
100	Insights into Secondary Organic Aerosol Formation Mechanisms from Measured Gas/Particle Partitioning of Specific Organic Tracer Compounds. Environmental Science & Technology, 2013, 47, 3781-3787.	10.0	58
101	Impact of California's air pollution laws on black carbon and their implications for direct radiative forcing. Atmospheric Environment, 2011, 45, 1162-1167.	4.1	57
102	Hygroscopic behavior and liquidâ€layer composition of aerosol particles generated from natural and artificial seawater. Journal of Geophysical Research, 2009, 114, .	3.3	54
103	Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products. Atmospheric Chemistry and Physics, 2010, 10, 5075-5088.	4.9	54
104	Investigating organic aerosol loading in the remote marine environment. Atmospheric Chemistry and Physics, 2011, 11, 8847-8860.	4.9	54
105	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃѬ҈¤Finland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	4.9	53
106	In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 498-525.	1.6	52
107	A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers. Journal of Geophysical Research, 2011, 116, .	3.3	52
108	Formation and growth of ultrafine particles from secondary sources in Bakersfield, California. Journal of Geophysical Research, 2012, 117, .	3.3	51

#	Article	IF	CITATIONS
109	Gas/particle partitioning of total alkyl nitrates observed with TD‣IF in Bakersfield. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6651-6662.	3.3	51
110	Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 2019, 100, 1511-1528.	3.3	51
111	Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B. Atmospheric Chemistry and Physics, 2010, 10, 6627-6644.	4.9	50
112	Atmospheric sulfur cycling in the southeastern Pacific – longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5079-5097.	4.9	50
113	Water uptake characteristics of individual atmospheric particles having coatings. Atmospheric Environment, 2007, 41, 6225-6235.	4.1	49
114	Light-enhanced primary marine aerosol production from biologically productive seawater. Geophysical Research Letters, 2014, 41, 2661-2670.	4.0	48
115	Size- and Composition-Resolved Externally Mixed Aerosol Model. Aerosol Science and Technology, 1998, 28, 403-416.	3.1	47
116	AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bulletin of the American Meteorological Society, 2020, 101, E1069-E1091.	3.3	46
117	Radially Classified Aerosol Detector for Aircraft-Based Submicron Aerosol Measurements. Journal of Atmospheric and Oceanic Technology, 1996, 13, 598-609.	1.3	45
118	Organic aerosol effects on fog droplet spectra. Journal of Geophysical Research, 2004, 109, .	3.3	45
119	Burning of olive tree branches: a major organic aerosol source in the Mediterranean. Atmospheric Chemistry and Physics, 2013, 13, 8797-8811.	4.9	45
120	Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20309-20314.	7.1	43
121	Surface Tensions in NaClâ^'Waterâ^'Air Systems from MD Simulations. Journal of Physical Chemistry B, 2007, 111, 11989-11996.	2.6	41
122	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	2.5	41
123	Influence of Emissions and Aqueous Processing on Particles Containing Black Carbon in a Polluted Urban Environment: Insights From a Soot Particleâ€Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6648-6666.	3.3	41
124	A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds. Journals of the Atmospheric Sciences, 2000, 57, 2729-2747.	1.7	40
125	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 290.	1.6	40
126	Organic functional groups in the submicron aerosol at 82.5° N, 62.5° W from 2012 to 2014. Atmospheric Chemistry and Physics, 2018, 18, 3269-3287.	4.9	40

#	Article	IF	CITATIONS
127	Aerosol dynamics in ship tracks. Journal of Geophysical Research, 1999, 104, 31077-31095.	3.3	39
128	In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 498-525.	1.6	38
129	Sea spray aerosol organic enrichment, water uptake and surface tension effects. Atmospheric Chemistry and Physics, 2020, 20, 7955-7977.	4.9	38
130	A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer. Journals of the Atmospheric Sciences, 2000, 57, 2748-2764.	1.7	37
131	Chemical and Toxicological Evolution of Carbon Nanotubes During Atmospherically Relevant Aging Processes. Environmental Science & amp; Technology, 2015, 49, 2806-2814.	10.0	37
132	Effect of Surface Tension from MD Simulations on Size-Dependent Deliquescence of NaCl Nanoparticles. Aerosol Science and Technology, 2008, 42, 369-376.	3.1	36
133	Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033145.	3.3	36
134	Singleâ€particle oxidation state and morphology of atmospheric iron aerosols. Journal of Geophysical Research, 2008, 113, .	3.3	35
135	Submicron organic aerosol in Tijuana, Mexico, from local and Southern California sources during the CalMex campaign. Atmospheric Environment, 2013, 70, 500-512.	4.1	35
136	Coupled oceanâ€atmosphere loss of marine refractory dissolved organic carbon. Geophysical Research Letters, 2016, 43, 2765-2772.	4.0	35
137	Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations. Atmospheric Chemistry and Physics, 2021, 21, 3427-3446.	4.9	35
138	Physical and chemical properties of the regional mixed layer of Mexico's Megapolis. Atmospheric Chemistry and Physics, 2009, 9, 5711-5727.	4.9	34
139	Cloud albedo increase from carbonaceous aerosol. Atmospheric Chemistry and Physics, 2010, 10, 7669-7684.	4.9	33
140	Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds. Atmospheric Chemistry and Physics, 2015, 15, 5645-5658.	4.9	33
141	Cloudâ€Nucleating Particles Over the Southern Ocean in a Changing Climate. Earth's Future, 2021, 9, e2020EF001673.	6.3	33
142	Phenol Groups in Northeastern U.S. Submicrometer Aerosol Particles Produced from Seawater Sources. Environmental Science & Technology, 2010, 44, 2542-2548.	10.0	32
143	Measurements of submicron aerosols at the California–Mexico border during the Cal–Mex 2010 field campaign. Atmospheric Environment, 2014, 88, 308-319.	4.1	32
144	Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric measurements by evolved gas analysis. Atmospheric Environment, 2009, 43, 1591-1602.	4.1	31

#	Article	IF	CITATIONS
145	Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering module. Atmospheric Measurement Techniques, 2013, 6, 187-197.	3.1	31
146	High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE. Atmospheric Chemistry and Physics, 2018, 18, 8571-8587.	4.9	31
147	Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy. Atmospheric Chemistry and Physics, 2011, 11, 10317-10329.	4.9	30
148	Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 9819-9835.	4.9	30
149	Prospects for simulating macromolecular surfactant chemistry at the ocean–atmosphere boundary. Environmental Research Letters, 2014, 9, 064012.	5.2	30
150	Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions. Atmospheric Chemistry and Physics, 2017, 17, 15055-15067.	4.9	30
151	Variability in Marine Plankton Ecosystems Are Not Observed in Freshly Emitted Sea Spray Aerosol Over the North Atlantic Ocean. Geophysical Research Letters, 2020, 47, e2019GL085938.	4.0	30
152	Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030913.	3.3	30
153	Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks. Journals of the Atmospheric Sciences, 2000, 57, 2591-2606.	1.7	29
154	Nanoparticle growth following photochemical α - and β -pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004. Journal of Geophysical Research, 2007, 112, .	3.3	29
155	Dependence of Real Refractive Indices on O:C, H:C and Mass Fragments of Secondary Organic Aerosol Generated from Ozonolysis and Photooxidation of Limonene and α-Pinene. Aerosol Science and Technology, 2014, 48, 498-507.	3.1	29
156	Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations. Journal of Chemical Physics, 2008, 129, 094508.	3.0	28
157	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	4.9	28
158	Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site. Atmospheric Chemistry and Physics, 2015, 15, 1367-1383.	4.9	28
159	Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth System Science Data, 2018, 10, 2279-2293.	9.9	28
160	Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). Bulletin of the American Meteorological Society, 1996, 77, 2691-2699.	3.3	27
161	Submicron Salt Particle Production in Bubble Bursting. Aerosol Science and Technology, 2006, 40, 664-671.	3.1	27
162	Hydroxyl radical formation and soluble trace metal content in particulate matter from renewable diesel and ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 2017, 51, 147-158.	3.1	27

#	ARTICLE	IF	CITATIONS
163	Composition and Morphology of Individual Combustion, Biomass Burning, and Secondary Organic Particle Types Obtained Using Urban and Coastal ATOFMS and STXM-NEXAFS Measurements. Aerosol Science and Technology, 2010, 44, 551-562.	3.1	26
164	Sources of organic aerosol investigated using organic compounds as tracers measured during CalNex in Bakersfield. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,388.	3.3	26
165	Microphysical and radiative evolution of aerosol plumes over the tropical North Atlantic Ocean. Journal of Geophysical Research, 2003, 108, AAC 11-1.	3.3	25
166	Void-induced dissolution in molecular dynamics simulations of NaCl and water. Journal of Chemical Physics, 2006, 124, 154713.	3.0	25
167	Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles. Aerosol Science and Technology, 2014, 48, v-x.	3.1	25
168	Ambient observations of hygroscopic growth factor and <i>f</i> (RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 661-677.	3.3	25
169	A microphysics-based investigation of the radiative effects of aerosol-cloud interactions for two MAST Experiment case studies. Journal of Geophysical Research, 2001, 106, 1249-1269.	3.3	24
170	Organic composition of single and submicron particles in different regions of western North America and the eastern Pacific during INTEX-B 2006. Atmospheric Chemistry and Physics, 2009, 9, 5433-5446.	4.9	24
171	Meteorological and aerosol effects on marine cloud microphysical properties. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4142-4161.	3.3	24
172	Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol. Journal of Geophysical Research, 2005, 110, .	3.3	23
173	Estimated contributions of primary and secondary organic aerosol from fossil fuel combustion during the CalNex and Cal-Mex campaigns. Atmospheric Environment, 2014, 88, 330-340.	4.1	23
174	Cloud partitioning of isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient air. Geophysical Research Letters, 2014, 41, 6962-6969.	4.0	23
175	Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6321-6335.	3.3	23
176	Measurements of formaldehyde at the U.S.–Mexico border during the Cal-Mex 2010 air quality study. Atmospheric Environment, 2013, 70, 513-520.	4.1	22
177	Factors That Modulate Properties of Primary Marine Aerosol Generated From Ambient Seawater on Ships at Sea. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,961.	3.3	22
178	Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,707.	3.3	22
179	Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,282.	3.3	21
180	Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO. Climate Dynamics, 2016, 46, 585-599.	3.8	21

#	Article	IF	CITATIONS
181	Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics, 2017, 17, 9797-9814.	4.9	21
182	Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 484.	1.6	20
183	Comparing black and brown carbon absorption from AERONET and surface measurements at wintertime Fresno. Atmospheric Environment, 2019, 199, 164-176.	4.1	20
184	Characteristics of the marine boundary layers during two Lagrangian measurement periods: 2. Turbulence structure. Journal of Geophysical Research, 1999, 104, 21767-21784.	3.3	19
185	Probing molecular associations of fieldâ€collected and laboratoryâ€generated SOA with nanoâ€DESI highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1042-1051.	3.3	19
186	Uniform particleâ€droplet partitioning of 18 organic and elemental components measured in and below DYCOMSâ€II stratocumulus clouds. Journal of Geophysical Research, 2008, 113, .	3.3	17
187	Potential sea salt aerosol sources from frost flowers in the panâ€Arctic region. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,840.	3.3	17
188	Removal of Sea Salt Hydrate Water from Seawater-Derived Samples by Dehydration. Environmental Science & Technology, 2012, 46, 13326-13333.	10.0	16
189	Impacts of the East Asian Monsoon on springtime dust concentrations over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8137-8152.	3.3	16
190	Observational evidence for pollutionâ€influenced selective uptake contributing to biogenic secondary organic aerosols in the southeastern U.S Geophysical Research Letters, 2017, 44, 8056-8064.	4.0	16
191	Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry. Biogeochemistry, 2015, 126, 25-56.	3.5	15
192	Lower NO <i>_x</i> but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 2017, 51, 123-134.	3.1	15
193	Influences of Primary Emission and Secondary Coating Formation on the Particle Diversity and Mixing State of Black Carbon Particles. Environmental Science & Technology, 2019, 53, 9429-9438.	10.0	15
194	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	4.9	15
195	Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol–cloud interaction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110756119.	7.1	15
196	Differing regional responses to a perturbation in solar cloud absorption in the SKYHI general circulation model. Journal of Geophysical Research, 2006, 111, .	3.3	14
197	Cloud Properties over the North Slope of Alaska: Identifying the Prevailing Meteorological Regimes. Journal of Climate, 2012, 25, 8238-8258.	3.2	14
198	Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010. Atmospheric Chemistry and Physics, 2013, 13, 3393-3407.	4.9	14

#	Article	IF	CITATIONS
199	Diesel vehicle and urban burning contributions to black carbon concentrations and size distributions in Tijuana, Mexico, during the Cal-Mex 2010 campaign. Atmospheric Environment, 2014, 88, 341-352.	4.1	14
200	Rainâ€aerosol relationships influenced by wind speed. Geophysical Research Letters, 2016, 43, 2267-2274.	4.0	14
201	More unsaturated, cooking-type hydrocarbon-like organic aerosol particle emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 2017, 51, 135-146.	3.1	14
202	Modeling the diurnal variability of agricultural ammonia in Bakersfield, California, during the CalNex campaign. Atmospheric Chemistry and Physics, 2017, 17, 2721-2739.	4.9	14
203	Regional Similarities and NO x â€Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10620-10636.	3.3	14
204	An examination of the algorithm for estimating light extinction from IMPROVE particle speciation data. Atmospheric Environment, 2019, 214, 116880.	4.1	14
205	Nonturbulent Liquidâ€Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves. Geophysical Research Letters, 2020, 47, e2020GL087099.	4.0	14
206	Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. Atmospheric Chemistry and Physics, 2021, 21, 1889-1916.	4.9	14
207	To assess marine cloud brightening's technical feasibility, we need to know what to study—and when to stop. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
208	Aerosol particle chemical characteristics measured from aircraft in the lower troposphere during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 185.	1.6	13
209	Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1502-1519.	3.3	13
210	Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds. Bulletin of the American Meteorological Society, 2016, 97, 1699-1702.	3.3	13
211	Organic composition of three different size ranges of aerosol particles over the Southern Ocean. Aerosol Science and Technology, 2021, 55, 268-288.	3.1	13
212	First measurements of reactive α-dicarbonyl concentrations on PM _{2.5} aerosol over the Boreal forest in Finland during HUMPPA-COPEC 2010 – source apportionment and links to aerosol aging. Atmospheric Chemistry and Physics, 2012, 12, 6145-6155.	4.9	12
213	Changes in Sea Salt Emissions Enhance ENSO Variability. Journal of Climate, 2016, 29, 8575-8588.	3.2	12
214	Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8761-8780.	3.3	12
215	Entrainment rates during ACE-2 Lagrangian experiments calculated from aircraft measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 335.	1.6	12
216	Characterization of submicron aerosol size distributions from time-resolved measurements in the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange. Journal of Geophysical Research, 1996, 101, 4469-4478.	3.3	11

#	Article	IF	CITATIONS
217	DMS role in ENSO cycle in the tropics. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,537.	3.3	10
218	Larger Submicron Particles for Emissions With Residential Burning in Wintertime San Joaquin Valley (Fresno) than for Vehicle Combustion in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,526.	3.3	10
219	Does Marine Surface Tension Have Global Biogeography? Addition for the OCEANFILMS Package. Atmosphere, 2018, 9, 216.	2.3	10
220	An analysis of processes determining the number-to-volume relationship for submicron aerosol in the eastern Atlantic. Journal of Geophysical Research, 2000, 105, 15321-15328.	3.3	9
221	Changing polar environments: Interdisciplinary challenges. Eos, 2012, 93, 117-118.	0.1	9
222	Investigating impacts of forest fires in Alaska and western Canada on regional weather over the northeastern United States using CAM5 global simulations to constrain transport to a WRF-Chem regional domain. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7515-7536.	3.3	9
223	Seasonal Differences in Submicron Marine Aerosol Particle Organic Composition in the North Atlantic. Frontiers in Marine Science, 2021, 8, .	2.5	9
224	North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry: polysaccharides, recalcitrant material, and secondary organics. Atmospheric Chemistry and Physics, 2020, 20, 16007-16022.	4.9	9
225	Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions. Journal of Geophysical Research, 2012, 117, .	3.3	8
226	Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). Bulletin of the American Meteorological Society, 0, , 130109100058001.	3.3	8
227	Effects on precipitation, clouds, and temperature from longâ€range transport of idealized aerosol plumes in WRFâ€Chem simulations. Journal of Geophysical Research, 2012, 117, .	3.3	7
228	Sea-spray particles cause freezing in clouds. Nature, 2015, 525, 194-195.	27.8	7
229	Similarities in STXM-NEXAFS Spectra of Atmospheric Particles and Secondary Organic Aerosol Generated from Glyoxal, α-Pinene, Isoprene, 1,2,4-Trimethylbenzene, and d-Limonene. Aerosol Science and Technology, 2013, 47, 543-555.	3.1	6
230	Comparison of methods of functional group analysis using results from laboratory and field aerosol measurements. Aerosol Science and Technology, 2021, 55, 1042-1058.	3.1	6
231	Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8284-8303.	3.3	5
232	Predicting Frigid Mixedâ€Phase Clouds for Pristine Coastal Antarctica. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035112.	3.3	5
233	Characterization of Sea Surface Microlayer and Marine Aerosol Organic Composition Using STXM-NEXAFS Microscopy and FTIR Spectroscopy. ACS Earth and Space Chemistry, 2022, 6, 1899-1913.	2.7	5
234	Entrainment rates during ACE-2 Lagrangian experiments calculated from aircraft measurements. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 335-347.	1.6	4

#	Article	IF	CITATIONS
235	Health and climate policy impacts on sulfur emission control. Reviews of Geophysics, 2005, 43, .	23.0	4
236	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	4.9	4
237	Carbonaceous Particles. , 2014, , 291-316.		3
238	Author contributions can be clarified. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8155-8155.	3.3	3
239	Measured Constraints on Cloud Top Entrainment to Reduce Uncertainty of Nonprecipitating Stratocumulus Shortwave Radiative Forcing in the Southern Ocean. Geophysical Research Letters, 2020, 47, e2020GL090513.	4.0	3
240	Response to comments on "Impact of California's air pollution laws on black carbon and their implications for direct radiative forcing―by R. Bahadur etÂal Atmospheric Environment, 2011, 45, 4119-4121.	4.1	2
241	Observed Relationships between Cloud Droplet Effective Radius and Biogenic Gas Concentrations in Summertime Marine Stratocumulus over the Eastern North Atlantic. Earth and Space Science, 0, , .	2.6	2
242	Regional signatures in the organic composition of marine aerosol particles. , 2013, , .		1
243	Observed aerosol effects on marine cloud nucleation and supersaturation. , 2013, , .		1
244	ARCTIC AND ANTARCTIC Arctic Haze., 2015, , 116-121.		1
245	Determination of DMA transfer functions using identical instruments in series. Journal of Aerosol Science, 1996, 27, S169-S170.	3.8	0
246	A microphysics-based investigation of aerosol-cloud interactions and their radiative effects. Journal of Aerosol Science, 1998, 29, S55-S56.	3.8	0
247	Comparison of modelled particle activation to cloud droplets in clean and anthropogenically-influenced aerosol conditions. Journal of Aerosol Science, 1998, 29, S1121-S1122.	3.8	0
248	A resilience view on reframing geoengineering research and implementation. Carbon Management, 2012, 3, 23-25.	2.4	0
249	Evaluating the properties of sea spray aerosols produced in the laboratory: Comparisons with controlled breaking waves. , 2013, , .		0
250	Volume Editor's Introduction. , 2014, , xxiii-xxv.		0
251	Corrigendum to "Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site" published in Atmos. Chem. Phys., 15, 1367–1383, 2015. Atmospheric Chemistry and Physics, 2015, 15, 1487-1487.	4.9	0
252	Appreciation of peer reviewers for 2015. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4335-4385.	3.3	0

#	Article	IF	CITATIONS
253	Appreciation of Peer Reviewers for 2019. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032611.	3.3	0
254	Appreciation of Peer Reviewers for 2020. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034920.	3.3	0
255	Appreciation of Peer Reviewers for 2021. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	0