
Zhaoxia Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319028/publications.pdf Version: 2024-02-01

Ζηνοχία Γιν

#	Article	IF	CITATIONS
1	Confined Crystallization in the Self-Assembled Nanostructures of Cellulose Nanocrystals and Polyethylene Glycol. ACS Sustainable Chemistry and Engineering, 2022, 10, 3007-3015.	6.7	4
2	Isothermal Titration Calorimetry Directly Measures the Selective Swelling of Block Copolymer Vesicles in the Presence of Organic Acid. ACS Omega, 2022, 7, 10580-10587.	3.5	5
3	Cellulose Nanocrystals/Poly(3,4-ethylenedioxythiophene) Photonic Crystal Composites with Electrochromic Properties for Smart Windows, Displays, and Anticounterfeiting/Encryption Applications. ACS Applied Nano Materials, 2022, 5, 10848-10859.	5.0	9
4	Mussel byssus cuticle-inspired ultrastiff and stretchable triple-crosslinked hydrogels. Journal of Materials Chemistry B, 2021, 9, 373-380.	5.8	13
5	Reduced Graphene Oxide-Polypyrrole Aerogel-Based Coaxial Heterogeneous Microfiber Enables Ultrasensitive Pressure Monitoring of Living Organisms. ACS Applied Materials & Interfaces, 2021, 13, 5425-5434.	8.0	21
6	A Green and Iridescent Composite of Cellulose Nanocrystals with Wide Solvent Resistance and Strong Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 6764-6775.	6.7	30
7	The different composites of cellulose nanocrystals with <scp>d</scp> - or <scp>l</scp> -histidine. Nanoscale, 2021, 13, 8174-8180.	5.6	12
8	Nanodiscs Generated from the Solvent Exchange of a Block Copolymer. Macromolecules, 2020, 53, 7025-7033.	4.8	19
9	Pre-leaching strategy for tuning porosity and composition to generate Co2P/Co@P/N-doped carbon towards highly efficient bifunctional oxygen electrocatalysis. Electrochimica Acta, 2020, 337, 135807.	5.2	15
10	Pt–Cu Bimetallic Nanoparticles Loaded in the Lumen of Halloysite Nanotubes. Langmuir, 2019, 35, 14651-14658.	3.5	21
11	Improving Homogeneity of Iridescent Cellulose Nanocrystal Films by Surfactant-Assisted Spreading Self-Assembly. ACS Sustainable Chemistry and Engineering, 2019, 7, 19062-19071.	6.7	29
12	The combination of metal-organic frameworks and polydopamine nanotubes aiming for efficient one-dimensional oxygen reduction electrocatalyst. Journal of Colloid and Interface Science, 2019, 552, 351-358.	9.4	28
13	Tough, Swelling-Resistant, Self-Healing, and Adhesive Dual-Cross-Linked Hydrogels Based on Polymer–Tannic Acid Multiple Hydrogen Bonds. Macromolecules, 2018, 51, 1696-1705.	4.8	291
14	Iridescent Chiral Nematic Cellulose Nanocrystal/Polyvinylpyrrolidone Nanocomposite Films for Distinguishing Similar Organic Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 6192-6202.	6.7	60
15	Au–Ag and Pt–Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Advances, 2018, 8, 10237-10245.	3.6	16
16	Free-standing polydopamine films generated in the presence of different metallic ions: the comparison of reaction process and film properties. RSC Advances, 2018, 8, 18347-18354.	3.6	24
17	Supramolecular Hydrogel Formation Based on Tannic Acid. Macromolecules, 2017, 50, 666-676.	4.8	330
18	Polydopamine nanotubes-templated synthesis of TiO ₂ and its photocatalytic performance under visible light. RSC Advances, 2017, 7, 23535-23542.	3.6	23

ZHAOXIA JIN

#	Article	IF	CITATIONS
19	Polydopamine Generates Hydroxyl Free Radicals under Ultraviolet-Light Illumination. Langmuir, 2017, 33, 5938-5946.	3.5	43
20	Tannic Acid-Based Multifunctional Hydrogels with Facile Adjustable Adhesion and Cohesion Contributed by Polyphenol Supramolecular Chemistry. ACS Omega, 2017, 2, 6668-6676.	3.5	155
21	A novel Fe–N–C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale, 2017, 9, 17364-17370.	5.6	118
22	Preparation of Cobaltâ€Based Electrodes by Physical Vapor Deposition on Various Nonconductive Substrates for Electrocatalytic Water Oxidation. ChemSusChem, 2017, 10, 4699-4703.	6.8	11
23	The modulation of melaninâ€like materials: methods, characterization and applications. Polymer International, 2016, 65, 1258-1266.	3.1	23
24	Scalable Fabrication of Polydopamine Nanotubes Based on Curcumin Crystals. ACS Biomaterials Science and Engineering, 2016, 2, 489-493.	5.2	55
25	Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments. Langmuir, 2016, 32, 10377-10386.	3.5	59
26	Does halloysite behave like an inert carrier for doxorubicin?. RSC Advances, 2016, 6, 54193-54201.	3.6	18
27	Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers. Langmuir, 2016, 32, 2259-2266.	3.5	8
28	Spiral and Mesoporous Block Polymer Nanofibers Generated in Confined Nanochannels. Macromolecules, 2015, 48, 272-278.	4.8	28
29	Folic acid–polydopamine nanofibers show enhanced ordered-stacking via π–π interactions. Soft Matter, 2015, 11, 4621-4629.	2.7	62
30	Oxidative Self-Polymerization of Dopamine in an Acidic Environment. Langmuir, 2015, 31, 11671-11677.	3.5	146
31	Hierarchical porous polycaprolactone microspheres generated via a simple pathway combining nanoprecipitation and hydrolysis. Chemical Communications, 2015, 51, 15114-15117.	4.1	14
32	Formation of Polydopamine Nanofibers with the Aid of Folic Acid. Angewandte Chemie - International Edition, 2014, 53, 12600-12604.	13.8	78
33	Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter, 2014, 10, 9212-9219.	2.7	50
34	Freezing polystyrene-b-poly(2-vinylpyridine) micelle nanoparticles with different nanostructures and sizes. Soft Matter, 2014, 10, 2848.	2.7	24
35	Selective Swelling of Block Copolymer Nanoparticles: Size, Nanostructure, and Composition. Macromolecules, 2014, 47, 2674-2681.	4.8	34
36	Characterization of Carbonized Polydopamine Nanoparticles Suggests Ordered Supramolecular Structure of Polydopamine. Langmuir, 2014, 30, 5497-5505.	3.5	214

ZHAOXIA JIN

#	Article	IF	CITATIONS
37	Polymer nanofibers by controllable infiltration of vapour swollen polymers into cylindrical nanopores. Soft Matter, 2013, 9, 945-951.	2.7	40
38	Mesoporous Blockâ€Copolymer Nanospheres Prepared by Selective Swelling. Small, 2013, 9, 322-329.	10.0	37
39	Swelling of Block Copolymer Nanoparticles: A Process Combining Deformation and Phase Separation. Langmuir, 2013, 29, 4640-4646.	3.5	28
40	The Influences of Cooperative Swelling and Coordination on Patterned Decoration of Gold on Block Copolymer Nanospheres. Macromolecular Chemistry and Physics, 2013, 214, 2579-2583.	2.2	7
41	Fabrication of Polymer Nanospheres Based on Rayleigh Instability in Capillary Channels. Macromolecules, 2011, 44, 1615-1620.	4.8	52
42	Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon, 2011, 49, 5166-5172.	10.3	101
43	Ultra-narrow WS ₂ nanoribbons encapsulated in carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 171-180.	6.7	74
44	Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites. Biomacromolecules, 2010, 11, 2345-2351.	5.4	514
45	Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl) Tj ETQq1 1 0.7843	14 rgBT /(Overlock 10