Andrei Jitianu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/531897/publications.pdf

Version: 2024-02-01

304743 302126 1,659 67 22 39 citations h-index g-index papers 73 73 73 2135 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polydopamine Antioxidant Hydrogels for Wound Healing Applications. Gels, 2020, 6, 39.	4.5	28
2	Effect of tetraethoxysilane (TEOS) on melting gel behavior. Journal of the American Ceramic Society, 2020, 103, 4140-4149.	3.8	2
3	Applications of melting gels. Journal of Sol-Gel Science and Technology, 2019, 89, 66-77.	2.4	9
4	Gold nanoparticles in melting gels. Journal of Sol-Gel Science and Technology, 2019, 91, 189-197.	2.4	6
5	The 2017 Life Achievement Awards of the International Sol-Gel Society. Journal of Sol-Gel Science and Technology, 2019, 89, 62-65.	2.4	O
6	Consolidated Melting Gel Coatings on AZ31 Magnesium Alloy with Excellent Corrosion Resistance in NaCl Solutions: An Interface Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3493-3505.	8.0	26
7	Deriving Efficient Porous Heteroatomâ€Doped Carbon Electrocatalysts for Hydrazine Oxidation from Transition Metal Ionsâ€Coordinated Casein. Advanced Functional Materials, 2019, 29, 1808486.	14.9	31
8	Focused laser spike (FLaSk) thermocapillary patterning of micro/nanostructures. , 2019, , .		0
9	Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties. International Journal of Biological Macromolecules, 2018, 111, 370-378.	7.5	12
10	Obtaining Thickness-Limited Electrospray Deposition for 3D Coating. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11175-11188.	8.0	31
11	Selfâ€degradable curcumin polymer with anti ancer activity. Journal of Applied Polymer Science, 2018, 135, 46867.	2.6	6
12	²⁹ Si NMR and SAXS investigation of the hybrid organic–inorganic glasses obtained by consolidation of the melting gels. Dalton Transactions, 2017, 46, 3729-3741.	3.3	17
13	Thickness-properties synergy in organic–inorganic consolidated melting-gel coatings for protection of 304 stainless steel in NaCl solutions. Surface and Coatings Technology, 2017, 315, 426-435.	4.8	18
14	Phase separation in melting gels. Journal of Commonwealth Law and Legal Education, 2017, 58, 142-149.	0.5	3
15	The 2015 Donald R Ulrich awards. Journal of Sol-Gel Science and Technology, 2016, 79, 244-246.	2.4	O
16	Corrosion Protection of AISI 304 Stainless Steel with Melting Gel Coatings. Electrochimica Acta, 2016, 202, 325-332.	5.2	42
17	Hybrid Sol–Gel Glasses with Glassâ€Transition Temperatures Below RoomÂTemperature. Journal of the American Ceramic Society, 2015, 98, 3673-3679.	3.8	29
18	Thermal behavior of Li–Co-citric acid water-based gels as precursors for LiCoO2 powders. Journal of Thermal Analysis and Calorimetry, 2015, 119, 145-153.	3.6	10

#	Article	IF	CITATIONS
19	Study of formation of LiCoO2 using a modified Pechini aqueous sol–gel process. Journal of Sol-Gel Science and Technology, 2015, 74, 406-418.	2.4	7
20	Nanosized Ni–Al layered double hydroxides—Structural characterization. Materials Research Bulletin, 2013, 48, 1864-1873.	5.2	42
21	Melting Gel Films for Low Temperature Seals. Materials Research Society Symposia Proceedings, 2013, 1547, 81-86.	0.1	1
22	Study of the Gelling Process in the <scp><scp>Laâ€Co</scp></scp> â€Citric Acid System. Journal of the American Ceramic Society, 2012, 95, 1068-1076.	3.8	5
23	Dielectric behavior of organically modified siloxane melting gels. Journal of Non-Crystalline Solids, 2012, 358, 3501-3504.	3.1	11
24	Thermal analysis of organically modified siloxane melting gels. Journal of Thermal Analysis and Calorimetry, 2012, 107, 1039-1045.	3.6	34
25	Sol-Gel Packaging for Electrochemical Devices. , 2012, , 375-392.		2
26	Methyl modified siloxane melting gels for hydrophobic films. Journal of Sol-Gel Science and Technology, 2010, 53, 272-279.	2.4	34
27	Organic–inorganic hybrid melting gels. Journal of Sol-Gel Science and Technology, 2010, 55, 86-93.	2.4	22
28	Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. Journal of Materials Chemistry, 2010, 20, 5030.	6.7	56
29	Phenylâ€Substituted Siloxane Hybrid Gels that Soften Below 140°C. Journal of the American Ceramic Society, 2009, 92, 36-40.	3.8	33
30	A Simple Preparative Route to Highly Stable Dispersions of Uniform Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1891-1896.	0.9	5
31	Sol–Gel Hybrids for Electronic Applications: Hermetic Coatings for Microelectronics and Energy Storage. , 2009, , 429-453.		4
32	Organic–inorganic sol-gel thick films for humidity barriers. Journal of Materials Research, 2008, 23, 2084-2090.	2.6	20
33	Amplified light scattering and emission of silver and silver core–silica shell particles. Journal of Colloid and Interface Science, 2007, 309, 8-20.	9.4	19
34	Iron oxide in a silica matrix prepared by the sol–gel method. Thin Solid Films, 2007, 515, 6319-6323.	1.8	39
35	Photothermal and photocatalytic processes on TiO2 based materials prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 2006, 37, 175-178.	2.4	9
36	Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route. Journal of Sol-Gel Science and Technology, 2006, 40, 317-323.	2.4	40

#	Article	IF	Citations
37	C60Based Hybrid Nanocomposites Obtained in the Presence of Ultrasounds. Journal of Sol-Gel Science and Technology, 2004, 31, 51-58.	2.4	0
38	Structural and magnetic properties of iron species/SiO2 nanocomposites obtained by sol-gel methods. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3507-3510.	0.8	9
39	Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon, 2004, 42, 1147-1151.	10.3	324
40	New carbon multiwall nanotubes – TiO2 nanocomposites obtained by the sol–gel method. Journal of Non-Crystalline Solids, 2004, 345-346, 596-600.	3.1	41
41	Structural Evolution During Reaction to Form Aluminum Titanate from Sol-Gel Precursors. Materials and Manufacturing Processes, 2004, 19, 641-650.	4.7	13
42	Structural Evolution During Reaction to Form Aluminum Titanate from Sol-Gel Precursors. Materials and Manufacturing Processes, 2004, 19, 641-650.	4.7	1
43	Spectroellipsometric Characterization of Multilayer Sol-Gel Fe2O3 Films. Journal of Sol-Gel Science and Technology, 2003, 26, 745-748.	2.4	24
44	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 483-488.	2.4	37
45	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 217-221.	2.4	18
46	Composition and thermal stability of SiO2-based hybrid materials TEOS-MTEOS system. Magyar Apróvad Közlemények, 2003, 71, 421-428.	1.4	27
47	Experiments for inorganic–organic hybrid sol–gel films for micro- and nano-photonics. Materials Science and Engineering C, 2003, 23, 301-306.	7. 3	23
48	Comparative study of the sol–gel processes starting with different substituted Si-alkoxides. Journal of Non-Crystalline Solids, 2003, 319, 263-279.	3.1	70
49	Solâ€Gel Mono―and Polyâ€component Nanosized Powders in the Al2O3–TiO2–SiO2–MgO System. Journ Dispersion Science and Technology, 2003, 24, 129-144.	nal of 2.4	19
50	SnO2 nanoparticles in the pores of non-structured SiO2 and Si-MCM-41: Comparison of their properties in gas sensing. Studies in Surface Science and Catalysis, 2002, 141, 653-660.	1.5	8
51	Al-MCM-41 synthesis using Al-isopropoxide as Al source. Studies in Surface Science and Catalysis, 2002, , 151-158.	1.5	2
52	Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3–SiO2 system, obtained by sol–gel method. Journal of Materials Chemistry, 2002, 12, 1401-1407.	6.7	144
53	NANOCOMPOSITE MATERIALS FOR As(V) REMOVAL BY MAGNETICALLY INTENSIFIED ADSORPTION. Separation Science and Technology, 2002, 37, 3693-3701.	2.5	10
54	Ageing Effect on the SiO2-based Inorganic-Organic Hybrid Materials. Magyar Apróvad Közlemények, 2001, 64, 689-696.	1.4	21

#	Article	IF	Citations
55	IR structural evidence of hydrotalcites derived oxidic forms. Vibrational Spectroscopy, 2000, 22, 75-86.	2.2	51
56	Composite SiO2â€"Iron Oxide Materials for Magnetically Intensified Adsorption. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246, 557-563.	1.5	15
57	Comparative Study of Sol-Gel and Coprecipitated Ni-Al Hydrotalcites. Journal of Sol-Gel Science and Technology, 2000, 19, 453-457.	2.4	27
58	SiO2-Iron Oxide Composites Obtained by Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2000, 19, 631-635.	2.4	14
59	Sol-Gel Poly-Component Nano-Sized Oxide Powders. Journal of Sol-Gel Science and Technology, 2000, 19, 409-412.	2.4	12
60	Thermal Stability of SiO2-Based Inorganic-Organic Hybrid Materials. Magyar Apróvad Közlemények, 1999, 56, 191-198.	1.4	18
61	Al2TiO5 preparation starting with reactive powders obtained by sol-gel method. Journal of the European Ceramic Society, 1998, 18, 1257-1264.	5.7	37
62	Carbonic Anhydrase Inhibitors. Part 551 Metal Complexes of 1,3,4-Thiadiazole-2-Sulfonamide Derivatives: In Vitro Inhibition Studies With Carbonic Anhydrase Isozymes I, II and IV. Metal-Based Drugs, 1998, 5, 103-114.	3.8	11
63	Carbonic Anhydrase Inhibitors. Part 541: Metal Complexes of Heterocyclic Sulfonamides: A New Class of Antiglaucoma Agents. Metal-Based Drugs, 1997, 4, 307-315.	3.8	4
64	Structural and textural characterization of iron oxide nanoparticles in the Fe/sub $2/O/sub\ 3/-SiO/sub\ 2/system$, obtained by sol-gel method. , 0 , , .		0
65	Silica-Containing Hybrid Nanocomposite "Melting Gels". Materials Science Forum, 0, 783-786, 1432-1437.	0.3	5
66	Investigation of Pyroaurite-Type Anionic Clay-Derived Mixed Oxides with Various Compositions. , 0, , 17-29.		0
67	Electrochemical Properties of Melting Gel Coatings. , 0, , 233-241.		1