Kai-Kai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318574/publications.pdf

Version: 2024-02-01

933447 794594 37 418 10 19 citations h-index g-index papers 40 40 40 380 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unexpected ester and phosphonate radical generation by hypervalent iodine compounds for synthesizing 6-phenanthridine derivatives. New Journal of Chemistry, 2022, 46, 6856-6859.	2.8	5
2	Facile Synthesis of Tricyclic 1,2,4-Oxadiazolines-Fused Tetrahydro-Isoquinolines from Oxime Chlorides with 3,4-Dihydroisoquinoline Imines. Molecules, 2022, 27, 3064.	3.8	2
3	Substrateâ€Controlled Regioselectivity Switch in a Threeâ€Component 1,3â€Dipolar Cycloaddition Reaction to Access 3,3′â€Pyrrolidinylâ€Spirooxindoles Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 2047-2052.	4.3	10
4	Recent Advances of Threeâ€component Reactions of Simple Indoles. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
5	Substrate-Controlled Regioselectivity Switchable [3 + 2] Annulations To Access Spirooxindole Skeletons. Journal of Organic Chemistry, 2022, 87, 8158-8169.	3.2	8
6	1,3-Dipolar cycloaddition reactions of azomethine ylides with seven-membered cyclic N-sulfony imines access to polycyclic sulfonamides. Tetrahedron, 2021, 77, 131766.	1.9	3
7	A copper iodide-catalyzed coupling reaction of benzofuran-3(2H)-ones with amines: an approach to \hat{l}_{\pm} -ketoamides. Organic and Biomolecular Chemistry, 2021, 19, 5294-5297.	2.8	1
8	[5+2] Cyclization of N,N′â€Cyclic Azomethine Imines with 1,3,5â€Triazines: An Efficient Protocol for the Synthesis of Tetrazepine Derivatives. Asian Journal of Organic Chemistry, 2021, 10, 371-374.	2.7	11
9	Synthesis of N-alkoxyphthalimide derivatives via PIDA-promoted cross dehydrogenative coupling reaction. RSC Advances, 2021, 11, 8051-8054.	3.6	4
10	Synthesis of spiro[4.4]thiadiazole derivatives via double 1,3-dipolar cycloaddition of hydrazonyl chlorides with carbon disulfide. RSC Advances, 2021, 11, 18404-18407.	3.6	1
11	NHCâ€Catalyzed Oxidative Annulation of α,βâ€unsaturated Aldehydes with Benzyl Ketones: Direct Access to 4,5,6â€Trisubstituted Dihydropyranones. Asian Journal of Organic Chemistry, 2021, 10, 766-770.	2.7	4
12	Asymmetric Synthesis of Tetrahydroisoquinoline Derivatives through 1,3-Dipolar Cycloaddition of C,N-Cyclic Azomethine Imines with Allyl Alkyl Ketones. Molecules, 2021, 26, 2969.	3.8	8
13	Nucleophilic H-Phosphites, H-Phosphinates, and H-Phosphine Oxides in Organic Reactions. Synthesis, 2021, 53, 3683-3698.	2.3	12
14	Recent Studies of Bifunctionalization of Simple Indoles. Asian Journal of Organic Chemistry, 2021, 10, 1580-1594.	2.7	13
15	Facile Synthesis of Sulfonyl Chlorides/Bromides from Sulfonyl Hydrazides. Molecules, 2021, 26, 5551.	3.8	5
16	Facile synthesis of <i>O</i> -acylhydroxamates <i>via</i> reaction of oxime chlorides with carboxylic acids. RSC Advances, 2021, 11, 40193-40196.	3.6	2
17	Formal [3 + 2] cycloaddition of azomethine ylides generated in situ with unactivated cyclic imines: A facile approach to tricyclic imidazolines derivatives. Journal of Heterocyclic Chemistry, 2020, 57, 1456-1463.	2.6	7
18	Dearomative [3 + 2] cycloaddition reaction of nitrobenzothiophenes with nonstabilized azomethine ylides. RSC Advances, 2020, 10, 28720-28724.	3.6	13

#	Article	IF	Citations
19	Facile synthesis of pyrazoles via $[3\hat{A}+\hat{A}2]$ cycloaddition of diazocarbonyl compounds and enones. Tetrahedron Letters, 2020, 61, 152622.	1.4	7
20	Oxidative N-heterocyclic carbene-catalyzed $[3 + 3]$ annulation reaction of enals with benzofuran-3-ones: efficient access to benzofuran-fused $\hat{\Gamma}$ -lactones. Organic Chemistry Frontiers, 2020, 7, 1011-1015.	4.5	10
21	Improved permeability and antifouling properties of polyvinyl chloride ultrafiltration membrane via blending sulfonated polysulfone. Journal of Colloid and Interface Science, 2020, 579, 562-572.	9.4	30
22	1,3-Dipolar cycloaddition of isatin <i>N</i> , <i>N</i> ,′-cyclic azomethine imines with α,β-unsaturated aldehydes catalyzed by DBU in water. RSC Advances, 2020, 10, 24288-24292.	3.6	12
23	Ynones in Reflexâ€Michael Addition, CuAAC, and Cycloaddition, as Well as their Use as Nucleophilic Enols, Electrophilic Ketones, and Allenic Precursors. European Journal of Organic Chemistry, 2020, 2020, 2456-2474.	2.4	16
24	Co–Catalyzed Oxidative Alkylation between Styrenes and Cyclic Ethers via sp3 Câ^'H Functionalization. ChemistrySelect, 2020, 5, 2078-2081.	1.5	9
25	Facile synthesis of tricyclic isoxazole-fused benzo[b]thiophene 1,1-dioxide derivatives via 1,3-dipolar cycloaddition. Tetrahedron Letters, 2020, 61, 151943.	1.4	4
26	Tetrabutylammonium Iodide-Promoted Acyloxylation–Peroxidation of Alkenes with Carboxylic Acid and tert-Butyl Hydroperoxide. Synlett, 2019, 30, 1708-1712.	1.8	2
27	Highly Efficient and Diastereoselective Construction of Tricyclic Pyrrolidineâ€Fused Benzo[b]thiophene 1,1â€dioxide Derivatives via 1,3â€Dipolar [3Â+Â2] Cycloaddition. Journal of Heterocyclic Chemistry, 2019, 56, 2274-2280.	2.6	8
28	Palladiumâ€catalyzed decarboxylative coupling of α,βâ€unsaturated carboxylic acids with aryl tosylates. Applied Organometallic Chemistry, 2019, 33, e4914.	3. 5	4
29	Catalystâ€Free Synthesis of 2,3â€Benzodiazepines via Tetrahydrodiazirino[3,1â€a]isoquinoline Reacts with Sulfonyl Chlorides. ChemistrySelect, 2019, 4, 3340-3343.	1.5	5
30	Synthesis of \hat{I}^3 -Lactones by TBAI-Promoted Intermolecular Carboesterification of Carboxylic Acids with Alkenes and Alcohols. Journal of Organic Chemistry, 2019, 84, 16068-16075.	3.2	4
31	Cross 1,3-dipolar cycloadditions of $\langle i \rangle C \langle i \rangle, \langle i \rangle N \langle i \rangle$ -cyclic azomethine imines with an $\langle i \rangle N \langle i \rangle$ -benzyl azomethine ylide: facile access to fused tricyclic 1,2,4-hexahydrotriazines. Organic and Biomolecular Chemistry, 2019, 17, 244-247.	2.8	15
32	Construction of polycyclic spirooxindoles through [3+2] annulations of Morita–Baylis–Hillman carbonates and 3-nitro-7-azaindoles. Chinese Chemical Letters, 2017, 28, 512-516.	9.0	38
33	Substrate-controlled switchable asymmetric annulations to access polyheterocyclic skeletons. Chemical Communications, 2016, 52, 11104-11107.	4.1	51
34	α-Regioselective Asymmetric [3 + 2] Annulations of Morita–Baylis–Hillman Carbonates with Cyclic 1-Azadienes and Mechanism Elucidation. Organic Letters, 2016, 18, 872-875.	4.6	84
35	Carbene Catalyzed Threeâ€Component Cascade Reaction of Benzofuranâ€2â€ones and Enals: Construction of Spirobenzofuranoneâ€Î´â€lactones. Asian Journal of Organic Chemistry, 0, , .	2.7	2
36	A Threeâ€Component Reaction to Construct βâ€Aminonitrosoâ€Î±â€Diazocarbonyl Compounds under Metalâ€F Conditions. Advanced Synthesis and Catalysis, 0, , .	ree 4.3	4

3

#	Article	IF	CITATIONS
37	Highly efficient and diastereoselective construction of substituted pyrrolidines bearing a quaternary carbon center via 1,3â€dipolar cycloaddition. Journal of Heterocyclic Chemistry, 0, , .	2.6	1