
David J Bray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318527/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Ι ΒΡΑΥ

#	Article	IF	CITATIONS
1	Modeling Alkyl Aromatic Hydrocarbons with Dissipative Particle Dynamics. Journal of Physical Chemistry B, 2022, 126, 5351-5361.	1.2	4
2	What can digitisation do for formulated product innovation and development?. Polymer International, 2021, 70, 248-255.	1.6	10
3	Critical Micelle Concentrations in Surfactant Mixtures and Blends by Simulation. Journal of Physical Chemistry B, 2021, 125, 5983-5990.	1.2	19
4	<tt>UMMAP</tt> : a statistical analysis software package for molecular modelling. Molecular Simulation, 2020, 46, 308-322.	0.9	12
5	The Role of Chemical Heterogeneity in Surfactant Adsorption at Solid–Liquid Interfaces. Journal of Chemical Theory and Computation, 2020, 16, 7135-7147.	2.3	8
6	Wax Formation in Linear and Branched Alkanes with Dissipative Particle Dynamics. Journal of Chemical Theory and Computation, 2020, 16, 7109-7122.	2.3	11
7	Efficient Algorithm for the Topological Characterization of Worm-like and Branched Micelle Structures from Simulations. Journal of Chemical Theory and Computation, 2020, 16, 4588-4598.	2.3	5
8	Recent advances in particle-based simulation of surfactants. Current Opinion in Colloid and Interface Science, 2020, 48, 137-148.	3.4	34
9	Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields. Journal of Chemical Information and Modeling, 2019, 59, 4278-4288.	2.5	36
10	Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 2633-2643.	2.3	80
11	Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients. Journal of Chemical Physics, 2017, 147, 094503.	1.2	59
12	Toward a Standard Protocol for Micelle Simulation. Journal of Physical Chemistry B, 2016, 120, 6337-6351.	1.2	55
13	An evaluation of noise reduction algorithms for particle-based fluid simulations in multi-scale applications. Journal of Computational Physics, 2016, 325, 380-394.	1.9	14
14	Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly. PLoS ONE, 2015, 10, e0132706.	1.1	30
15	The effects of particle morphology on the analysis of discrete particle dispersion using Delaunay tessellation. Composites Part A: Applied Science and Manufacturing, 2013, 54, 37-45.	3.8	13
16	The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size. Polymer, 2013, 54, 7022-7032.	1.8	106
17	Quantifying Nanoparticle Dispersion by Using The Area Disorder of Delaunay Triangulation. Journal of the Royal Statistical Society Series C: Applied Statistics, 2012, 61, 253-275.	0.5	16
18	Velocity statistics in dissipative, dense granular media. Physical Review E, 2007, 75, 062301.	0.8	8